Born-Haber Cycle

Introduction: Born-Haber cycle is used to calculate the lattice energy of a substance based on experimental of enthalpy changes. The Born-Haber cycle is an application of Hess' law of heat summation.

Enthalpy Change	Symbol	Example Equations
Standard enthalpy change of formation- the enthalpy change when one mole of a compound is formed from its elements in their standard states.	∆H _f ⊖	$\begin{array}{l} H_{2(q)}+ \frac{\gamma_2 O_{2(q)}}{\rightarrow} H_2 O_{(l)} \\ Na_{(s)} + \frac{\gamma_2 Cl_{2(q)}}{\rightarrow} Na Cl_{(s)} \end{array}$
Standard enthalpy change of atomisation- the enthalpy change when 1 mole of atoms in gaseous state is formed from the element in its standard state.	∆H _{at} ⇔	Na _(s) → Na _(q) ½Cl _{2(q)} → Cl _(q)
First electron affinity- the enthalpy change when 1 mole of gaseous atoms each gain 1 electron.	∆H _{Ea} ⇔	$\begin{array}{c} C _{(\alpha)} \rightarrow C _{(\alpha)} \\ O_{(\alpha)} \rightarrow O_{(\alpha)} \end{array}$
First ionisation enthalpy- the enthalpy change when 1 mole of gaseous 1+ ions are formed from 1 mole of gaseous atoms.	∆H _{i(1)} ⇔	$Na_{(s)} \rightarrow Na^{+}_{(q)}$ $Ca_{(q)} \rightarrow Ca^{+}_{(q)}$
Lattice enthalpy- the enthalpy change when 1 mole of solid ionic compound is made from gaseous ions.	ΔH _{LE} ^Θ	Na⁺(q) + Cl⁺(q) → NaCl(s)

https://www.youtube.com/watch?v=YEJ5ITLC4IU&feature=emb_logo

<u>https://www.slideshare.net/Mr-Midgley/born-haber-</u> cycle?ref=https://notesmaster.com/en/group/caribbean/1556-cape-covid19-support/28342-born-

haber-cycles

https://quizlet.com/gb/225484829/chemistry-thermodynamics-flash-cards/