Subject: Science

Level: Form 3 Chemistry

Topic: Electronic Configuration

Key Points:

• The **electron configuration** is the distribution of **electrons** of an atom or molecule in atomic or molecular orbitals.

• Electrons orbit the nucleus in structures called shells.

• A maximum number of electrons are housed in each shell.

SHELL NUMBER	MAXIMUM NUMBER OF ELECTRONS
1	2
2	8
3	18

• When an atom **donates** electron, it becomes a **positive** ion called a **CATION**

$$X - e^{-} \longrightarrow X^{+}$$

When an atom accepts the electron, it becomes a negative ion called ANION

$$Y + e^{-} \longrightarrow Y^{-}$$

- An **ionic bond** essentially is formed when an atom donates electrons to another atom
- The other atom will accept the electrons in an attempt for stability and compounds are formed. $X^+ + Y^- \longrightarrow XY$

Activity 1

In the space below, draw the electron configuration for the element shown. The first one has been done for you.

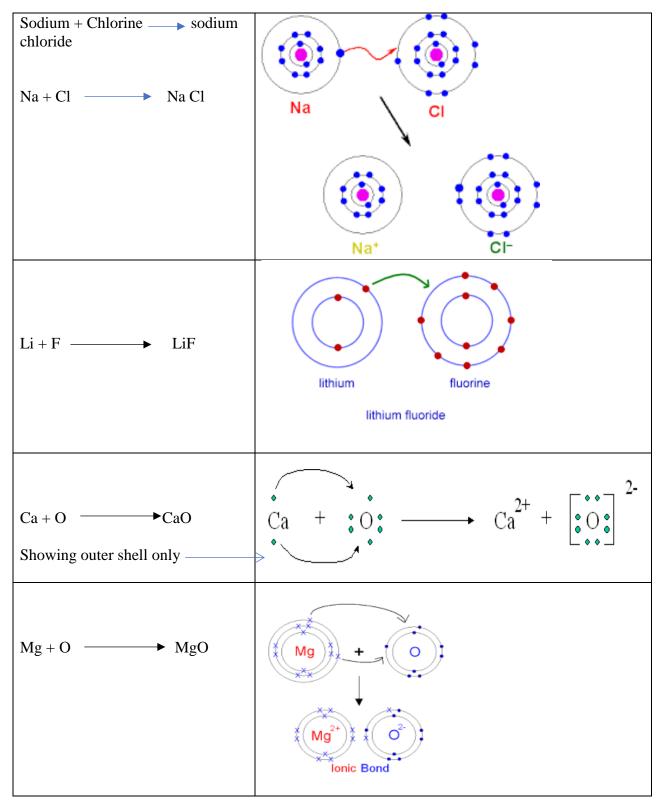
Element	Electron Configuration
$Sulfur-S_{16}$	2.8.6
Hydrogen – H ₁	
Sodium – Na ₁₁	
Nitrogen – N ₇	
Helium – He ₂	
Oxygen – O ₈	

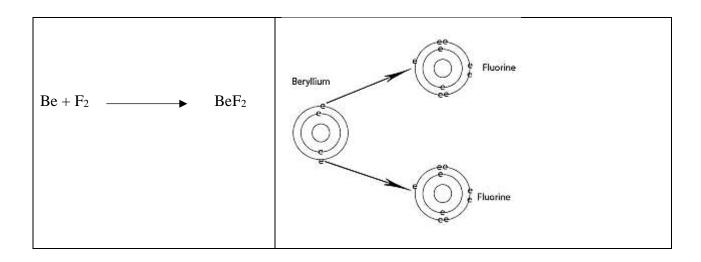
Element	Electron Configuration
Chlorine – Cl ₁₇	
Beryllium – Be ₄	
Fluorine – F ₉	
Aluminium – Al ₁₃	
$Neon-N_{10}$	

Activity 2 –

Use the table below to draw diagrams showing ionic bonding. The first one has been done for you.

Sodium + Chlorine sodium chloride	
Na + Cl Na Cl	Na CI
	Na* CI-
Li + F ──► LiF	
Ca + O → CaO	
Mg + O → MgO	
$Be + F_2 \longrightarrow BeF_2$	


Answer Key


Activity 1

Element	Electron Configuration
$Sulfur - S_{16}$	2.8.6
Hydrogen – H ₁	
Sodium – Na ₁₁	
Nitrogen – N ₇	
Helium – He ₂	
Oxygen – O ₈	

Element	Electron Configuration
Chlorine – Cl ₁₇	
Beryllium – Be ₄	
Fluorine – F ₉	
Aluminium – Al ₁₃	
$Neon-N_{10}$	

Activity 2

References

Retrieved from $\underline{\text{https://www.thoughtco.com/atoms-diagrams-electron-configurations-elements-}}{4064658}$

Basant, Bhavani. December 20, 2019. Retrieved from

https://www.toppr.com/ask/question/suitable-diagrams-for-the-formation-of-sodium-chloride-is/

Nelson, Ken. (2020). Chemistry for Kids: Chemical Bonding. *Ducksters*. Retrieved from https://www.ducksters.com/science/chemistry/chemical_bonding.php

Michael Blaber. CHM1045. Retrieved from https://www.mikeblaber.org/oldwine/chm1045/p_exams/exam3a/exam3key.htm

GCSE Chemistry (2015) Retrieved from https://www.gcsescience.com/a7-ionic-bond-magnesium-oxide.htm

Beryllium Floride (2018). Retrieved from https://alchetron.com/Beryllium-fluoride