MATHEMATICS STUDY GUIDE

Curriculum Planning and Development Division

The booklet highlights some salient points for each topic in the CSEC Mathematics syllabus. At least one basic illustration/example accompanies each salient point. The booklet is meant to be used as a resource for "last minute" revision by students writing CSEC Mathematics.

Produced by: Patrick Ramdath, Curriculum Officer- Mathematics

Edited by: Nicole Harris-Knudsen, Acting Curriculum Coordinator- Mathematics

Number Theory		
Basic Rules		
Points to Remember	Illustration/ Example	
The sum of any number added to zero gives the	The Additive Identity	
same number	a + 0 = 0 + a = a	
	7 + 0 = 7	
	0 + 3.6 = 3.6	
The product of any number multiplied by 1 gives	Multiplicative Identity	
the same number	$a \times 1 = 1 \times a = a$	
	$7 \times 1 = 1 \times 7 = 7$	
Any number that is multiplied by zero gives a	$\mathbf{a} \times 0 = 0 \times \mathbf{a} = 0$	
product of zero	$7 \times 0 = 0 \times 7 = 0$	
The sum (or difference) of 2 real numbers equals a	4 + 5 = 9	
real number	4 + (-5) = -1	
	4.3 + 5.2 = 9.5	
Zero divided by any number equals zero.	0/5 = 0	
	$0/x = 0$ $x \neq 0$	
Any number that is divided by zero is undefined.	5/0 is undefined	
The denominator of any fraction cannot have the	0/0 is undefined	
value zero.	$x/0$ is undefined $x \neq 0$	
The Associative Law states The "Associative	(a+b)+c = a+(b+c)	
Laws" say that it doesn't matter how we group the	(6+3) + 4 = 6 + (3+4) = 13	
numbers, the order in which numbers are added or		
multiplied does not affect their sum or product.	$(a \times b) \times c = a \times (b \times c)$	
	$(6 \times 3) \times 4 = 6 \times (3 \times 4) = 72$	
The Commutative Law states that when adding or	$a+b+c=c+b+a=b+\overline{c+a}$	
multiplying numbers, the order of the numbers	2 + 3 + 4 = 4 + 3 + 2 = 3 + 4 + 2 = 9	
does not matter.		
	$a \times b \times c = c \times b \times a = b \times c \times a$	
	$2 \times 3 \times 4 = 4 \times 3 \times 2 = 3 \times 4 \times 2 = 24$	
BODMAS provides the key to solving	$7 + (6 \times 5^2 \times 3)$ Start inside Brackets, and then use	
mathematical problems	"Orders" first	
B - B rackets first	$= 7 + (6 \times 25 + 3)$ Then Multiply	
O - Orders (ie Powers and Square Roots, etc.)	= 7 + (150 + 3) Then Add	
DM- D ivision and M ultiplication (left-to-right)	= 7 + (153) Final operation is addition	
	= 160 DONE!	
When positive numbers are added together the	4 + 5 = 9	
result is positive		
When two or more negative numbers are to be	- 4 - 5 = - 9	
added, we simply add their values and get another		
negative number		
Ŭ		

Number Theory		
Basic Rules		
Points to Remember	Illustration/ Example	
To find the difference between two numbers when	20 - 10 = 10	
one number is positive and one number is negative	-20 + 10 = -10	
the result will be "+" if the larger value is positive		
or "-" negative if the larger number is negative.		
When multiplying, two positive numbers	$(+) \times (+) = +$	e.g.
multiplied together give a positive product; and a	$(-) \times (-) = +$	$8 \times 5 = 40$
negative number multiplied by another negative	$(+) \times (-) = -$	$-8 \times -5 = 40$
number gives a positive product. Also, a negative	$(-) \times (+) = -$	$8 \times -5 = -40$
number multiplied by a positive number gives a		$-8 \times 5 = -40$
negative product		

Number Theory			
Positive and Negative Numbers			
Points to Remember	Illustration/ Example		
The rules for division of directed numbers are	$(+) \div (+) = +$	e.g. $10 \div 5 = 2$	
similar to multiplication of directed numbers.	$(-) \div (-) = +$	$-10 \div -5 = 2$	
Use manipulatives- counters (yellow and red)	$(+) \div (-) = -$	$10 \div -5 = -2$	
	$(-) \div (+) = -$	$-10 \div 5 = -2$	
There are different type of numbers:	Natural Numbers (N): {1	,2,3,}	
Natural Numbers - The whole numbers from 1	Integers (Z) : {, -3, -2, -1	, 0, 1, 2, 3,}	
upwards	Rational Numbers (Q) :. 3/2 (=1.5), 8/4 (=2), 136/100		
Integers - The whole numbers, {1,2,3,} negative	(=1.36), -1/1000 (=-0.001)		
whole numbers $\{\dots, -3, -2, -1\}$ and zero $\{0\}$.	Irrational Number : π , 3.142 (cannot be written as a		
Rational Numbers- The numbers you can make	fraction)		
by dividing one integer by another (but not	Real Numbers (R): 1.5, -12	2.3, 99, $\sqrt{2}$, π	
dividing by zero). In other words, fractions.			
Irrational Number – Cannot be written as a ratio			
of two numbers			
Real Numbers - All Rational and Irrational			
numbers. They can also be positive, negative or			
zero.			

Number Theory	
Decimals – Rounding	
Points to Remember	Illustration/ Example
Rounding up a decimal means increasing the	5.47 to the tenths place, it can be can be rounded up to
terminating digit by a value of 1 and drop off the	5.5
digits to the right.	6.734 to the hundredths place, it can be rounded down to
Round down if the number to the right of our	6.73
terminating decimal place is four or less (4,3,2,1,0)	

Number Theory		
Operations with Decimals		
Points to Remember	Illustration/ Example	
Find the product of 3.77 x 2.8 =? 1. Line up the numbers on the right, 2. multiply each digit in the top number by	Find the product of 3.77×2.8 3.77 (2 decimal places)	
2. Indulphy each digit in the top number by each digit in the bottom number (like whole numbers),	$\frac{2.6}{754}$ (1 decimal place) $\frac{3016}{10.555}$	
 add the products, and mark off decimal places equal to the sum of the decimal places in the numbers being multiplied. 	10.556 (3 decimal places)	
When dividing, if the divisor has a decimal in it, make it a whole number by moving the decimal point to the appropriate number of places to the	Find the quotient.	
right. If the decimal point is shifted to the right in the divisor, also do this for the dividend.	55.318÷3.4 — 3.4)55.318 Write in standard form.	
	3.4.)55.318 Move decimal point in divisor and dividend.	
	3.4. 55.318 Keep dividing until quotient -34 repeats or comes out 213 evenly.	
	- <u>204</u> 91 Add zeros on right of dividend - <u>68</u> as needed. 238	
	- <u>238</u> The quotient is 16.27. 0	
Fractions can always be written as decimals.	For example:	
	$\frac{2}{5} = 0.4$ $\frac{1}{2} = 0.5$ $\frac{3}{4} = 0.75$	
	$\frac{1}{4} = 0.25$ $\frac{3}{5} = 0.6$ $\frac{3}{4} = 0.75$	

Number Theory				
Significant figures				
Points to Remember	Ill	ustration/ Example		
The rules for significant figures: 1) ALL non-zero numbers (1,2,3,4,5,6,7,8,9) are ALWAYS significant.		Number	Number of Significant Figures	Rule(s)
2) ALL zeroes between non-zero numbers		48,923	5	1
are ALWAYS significant. 3) ALL zeroes which are SIMULTANEOUSLY to the right of the decimal point AND at the end of the number are ALWAYS significant. 4) ALL zeroes which are to the left of a written decimal point and are in a number >= 10 are ALWAYS significant. A helpful way to check rules 3 and 4 is to write the number in scientific notation. If you can/must get rid of the zeroes, then they are NOT significant.		3.967	4	1
		900.06	5	1,2,4
		0.0004 (= 4 E-4)	1	1,4
		8.1000	5	1,3
		501.040	6	1,2,3,4
		3,000,000 (= 3 E+6)	1	1
		10.0 (= 1.00 E+1)	3	1,3,4

Number Theory		
Binary Numbers		
Points to Remember	Illustration/ Example	
Each digit "1" in a binary number represents a power of two, and each "0" represents zero.	0001 is 2 to the zero power, or 1 0010 is 2 to the 1st power, or 2 0100 is 2 to the 2nd power, or 4 1000 is 2 to the 3rd power, or 8	
Binary numbers can be added	$\frac{+11101}{101110}$	
Binary numbers can be subtracted	0 010 0 10101.101 - 1011.11 1001.111	

Number Theory	
Computation – Fractions	
Points to Remember	Illustration/ Example
When the numerator stays the same, and the denominator increases, the value of the fraction decreases	$\frac{1}{3}, \frac{1}{4}, \frac{1}{5}$
	$\frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}$
When the denominator stays the same, and the numerator increases, the value of the fraction increases.	$\frac{7}{2}, \frac{8}{2}, \frac{9}{2}$
Equivalent fractions are fractions that may look different, but are equal to each other.	$\frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \frac{4}{8}$
Equivalent fractions can be generated by multiplying or dividing both the numerator and denominator by the same number.	$\frac{1}{2} = \frac{1x^2}{2x^2} = \frac{2}{4}$ $\frac{3}{5} = \frac{3x^2}{5x^2} = \frac{6}{10}$
Fractions can be simplified when the numerator and denominator have a common factor in them	$\frac{6}{10} = \frac{3x^2}{5x^2} = \frac{3}{5}$
Fractions with different denominators, can be converted to a set of fractions that have the same denominator	$\frac{3}{4}$, $\frac{2}{3}$ is the same as $\frac{9}{12}$, $\frac{8}{12}$
Addition and subtraction of fractions are similar to adding and subtracting whole numbers if the fractions being added or subtracted have the same denominator	$\frac{9}{12} - \frac{8}{12} = \frac{1}{12}$
When multiplying fractions, multiply the numerators together and then multiply the denominators together and simplify the results.	$\frac{5}{6} \times \frac{2}{3} = \frac{10}{18} = \frac{5}{9}$

Number Theory	
Prime Numbers	
Points to Remember	Illustration/ Example
A prime number is a number that has only two factors: itself and 1e.g. 5 can only be divided evenly by 1 or 5, so it is a prime number. Numbers that are not prime numbers are referred to as composite numbers	Prime: 2 3 5 7 etc Composite: 4 6 8 9

Number Theory		
Computation of Decimals, Fractions and Percentages		
Points to Remember	Illustration/ Example	
Percent means "per one hundred"	20% = 20 per 100	
To convert from percent to decimal, divide the	$10.9\% = \frac{10}{100} = 0.1$	
percent by 100	10% - 100 - 0.1	
	$67.5\% = \frac{67.5}{100} = 0.675$	
To convert from decimal to percent, multiply the	0.10 as a percentage is $0.10 \times 100 = 10\%$	
decimal by 100	0.675 is $0.675 \times 100 = 67.5\%$	
To convert from percentages to fractions, divide	<u>12</u> 12÷4 3	
the percent by 100 to get a fraction and then	$12\% = \overline{100} = \overline{100 \div 4} = \overline{25}$	
simplify the fraction		
To convert from fractions to percentages, convert	$\frac{3}{2}$ 0.12	
the fraction to a decimal by dividing the numerator	25 = 0.12	
by the denominator and then convert the decimal	0.12 as a percentage is $0.12 \times 100 = 12\%$	
to a percent by multiplying by 100.		

Triangles	
Classification of Triangles	
Points to Remember	Illustration/ Example
Triangles can be classified according to lengths of their sides to fit into three categories:-	Scalene Triangle
Scalene: No equal sides ;No equal angles	
Isosceles: Two equal sides ; Two equal angles	Isosceles triangle
Equilateral Triangle: Three equal sides ; Three equal 60° angles	Equilateral Triangle
Triangles can be classified according to angles:-	acute angle triangle
Acute- All three angles are acute angles. Obtuse- An obtuse triangle is a triangle in which one of the angles is an obtuse angle. Right angle- A triangle that has a right angle (90°)	obtuse angle triangle
	right angle triangle c d

Angles formed by a Transversal Crossing two	Parallel Lines
Vertical Angles are the angles opposite each	Illustration of all angles mentioned on a single
other when two lines cross.	diagram. The transversal crosses two Parallel
Vertically opposite angles are equal	Lines
a = d $f = g$	
b = c $e = h$	a b
The angles in matching corners are called	
Corresponding Angles.	
Corresponding Angles are equal	
a = e $c = g$	
$\mathbf{b} = \mathbf{f}$ $\mathbf{d} = \mathbf{h}$	e - 1
The pairs of angles on opposite sides of the transversal but inside the two lines are called Alternate Angles . Alternate Angles are equal $d = e$ $c = f$	g h
The pairs of angles on one side of the	
transversal but inside the two lines are called	
Consecutive Interior Angles.	
Consecutive Interior Angles are supplementary	
(add up to 180°)	
d + f $c + e$	

Triangles		
Pythagoras' Theorem		
Points to Remember	Illustration/ Example	
Pythagoras' Theorem states that the square of the	$c^2 = a^2 + b^2$	The Hypotenuse is c
hypotenuse is equal to the sum of the squares on	Find c	
the other two sides	$5 = 5^{2} + 12^{2}$ = 25 + 144 = 169 c= $\sqrt{169}$ = 13 units	r 12

Triangles	
Similar Triangles & Congruent Triangles	
Points to Remember	Illustration/ Example
Definition: Triangles are similar if they have the	Show that the two triangles given beside are similar and
same shape, but can be different sizes.	calculate the lengths of sides PQ and PR.
(They are still similar even if one is rotated, or one is a mirror image of the other).	Q
There are three accepted methods of proving that	$B \rightarrow c$ 12
triangles are similar:	4 0
If two angles of one triangle are equal to two	/ 1
angles of another triangle, the triangles are similar.	
B D E	Solution: $\angle A = \angle P$ and $\angle B = \angle Q$, $\angle C = \angle R$ (because $\angle C = 180$ -
	$\Delta A - \Delta B$ and $\Delta R = 180 - \Delta P - \Delta Q$ Therefore, the two triangles ΔABC and ΔPQR are
If angle $A = angle D$ and $angle B = angle E$	similar.
Then $\triangle ABC$ is similar to $\triangle DEF$	

Triangles	
Similar Triangles & Congruent Triangles	
Points to Remember	Illustration/ Example
 If the three sets of corresponding sides of two triangles are in proportion, the triangles are similar. 	Consequently: $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$ implies $\frac{AB}{PQ} = \frac{BC}{QR}$
B D F F	Substituting known lengths give: $\frac{4}{PQ} = \frac{6}{12}$ or $6PQ = 4 \times 12$ Therefore $PQ = \frac{12 \times 4}{6} = 8$
	Also, $\frac{BC}{QR} = \frac{AC}{PR}$
If	Substituting known lengths give: $\frac{6}{12} = \frac{7}{PR}$ or $6PR = 12 \times 7$
$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$	Therefore PR = $\frac{12 \times 7}{6} = 14$
Then $\triangle ABC$ is similar to $\triangle DEF$	Find the length $AD(x)$
 If an angle of one triangle is equal to the corresponding angle of another triangle and the lengths of the sides including these angles are in proportion, the triangles are similar. 	
$A \xrightarrow{\mathbf{B}} D \xrightarrow{\mathbf{F}} F$	The two triangles $\triangle ABC$ and $\triangle CDE$ appear to be similar since AB DE and they have the same apex angle C. It appears that one triangle is a scaled version of the other. However, we need to prove this mathematically.
If angle A = angle D and	AB DE, CD AC and BC EC $\angle BAC = \angle EDC$ and $\angle ABC = \angle DEC$
$\frac{AB}{DE} = \frac{AC}{DF}$ Then $\triangle ABC$ is similar to $\triangle DEF$	Considering the above and the common angle C , we may conclude that the two triangles $\triangle ABC$ and $\triangle CDE$ are similar.

Triangles	
Similar Triangles & Congruent Triangles	
Points to Remember	Illustration/ Example
	Therefore:
	$\frac{DE}{AB} = \frac{CD}{CA}$
	$\frac{7}{11} = \frac{15}{CA}$
	$7CA = 11 \times 15$
	$CA = \frac{11 \times 15}{7}$
	CA = 23.57
	x = CA - CD = 23.57 - 15 = 8.57

Mensuration	
Areas & Perimeters	
Points to Remember	Illustration/ Example
$A = \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$	
Area of triangle, given two sides and the angle between them c d b $sinC$ b $sinC$ $BEither Area = \frac{1}{2} ab sin Cor Area = \frac{1}{2} bc sin Aor Area = \frac{1}{2} bc sin BOr in general,Area = \frac{1}{2} \times side 1 \times side 2 \times sine of the included angle$	First of all we must decide what we know. We know angle C = 25°, and sides a = 7 and b = 10. Start with: Area= ($\frac{1}{2}$) ab sin C Put in the values we know: Area= $\frac{1}{2} \times 7 \times 10 \times \sin(25^\circ)$ Do some calculator work: Area = 35×0.4226 = 14.8 units ² (1dp)
Area of Parallelogram, given two sides and an angle The diagonal of a parallelogram divides the parallelogram into two congruent triangles. Consequently, the area of a parallelogram can be thought of as doubling the area of one of the triangles formed by a diagonal . This gives the trig area formula for a parallelogram:	Find the area of the parallelogram: 120° 6 Area = ab sin C $= (8)(6)sin 120^{\circ}$ $= 41.569 = 41.57 square units$
Either Area = $ab sin C$ or Area = $bc sin A$ or Area = $ac sin B$	

Mensuration	
Surface Area and Volumes	
Points to Remember	Illustration/ Example
r = radius h = height s = length of slant $\frac{1}{r} = r^{2}$	What is the volume and surface area of a cone with radius 4 cm and slant 8 cm? Slant Height using Pythagoras' Theorem: $h = \sqrt{s^2 - r^2}$ $= \sqrt{8^2 - 4^2}$ $= \sqrt{64 - 16}$ $= \sqrt{48}$
Volume of cone = $_3 \pi r^2 h$ The slant of a right circle cone can be figured out using the Pythagorean Theorem if you have the height and the radius.	= $6.928 \approx 6.93$ Volume of cone = $\frac{1}{3} \pi r^2 h = \frac{1}{3} \times 3.14 \times 4^2 \times 6.93 = 116.05 \text{ cm}^3$
	Surface area
Surface area	$=\pi rs + \pi r^2$
$=\pi rs + \pi r^2$	$= (3.14 \times 4 \times 8) + (3.14 \times 4^2)$
	= 100.48 + 50.24
	$= 150.72 \text{ cm}^2$
	Find the volume and surface area and of a sphere with radius 2 cm
	Volume of Sphere $=\frac{4}{3}\pi r^3$
(-+	$=\frac{4}{3}\times 3.14\times 2^3$
	$=\frac{100.48}{3}$
Volume of Sphere: $\mathbf{V} = \frac{4}{3} \pi \mathbf{r}^3$	$= 33.49 \text{ cm}^3$
	Surface Area of Sphere = $4\pi r^2$
Surface area of a sphere: $A = 4\pi r^2$	$= 4 \times 3.14 \times 2^2$
	$= 50.24 \text{ cm}^2$

Mensuration	Mensuration	
Surface Area and Volumes		
Points to Remember	Illustration/ Example	
Volume of cube = s^3	Find the volume and surface area of a cube with a side of length 3 cm Volume of cube = $s \times s \times s = s^3 = 3 \times 3 \times 3 = 27 \text{ cm}^3$ Surface Area of cube = $s^2 + s^2 + s^2 + s^2 + s^2 + s^2 = 6 s^2 = 6(3)^2 = 6 \times 9 = 54 \text{ cm}^2$	
Surface Area of cube $= s^2 + s^2 + s^2 + s^2 + s^2 + s^2$ = 6 s ²		
Volume of cuboid = length x breadth x height = xyz Surface area = $xy + xz + yz + xy + xz + yz$ = $2xy + 2xz + 2yz$ = $2(xy + xz + yz)$	Find the volume and surface area of a cuboid with length 10cm, breadth 5cm and height 4cm. Volume of cuboid = length × breadth × height = $10 \times 5 \times 4$ = 200cm^3 Surface Area of cuboid = $2xy + 2xz + 2yz$ = $2(10)(5) + 2(10)(4) + 2(5)(4)$ = $100 + 80 + 40$ = 220 cm^2	
Cost of the ight Cost of the i	Find the volume of a rectangular-based pyramid whose base is 8 cm by 6 cm and height is 5 cm. h = 5 cm	
The Volume of a Pyramid	Solution:	
$=\frac{1}{3} \times [Base Area] \times Height$	$V = \frac{1}{3} \times [Base Area] \times Height$	

Mensuration		
Surface Area and Volumes		
Points to Remember	Illustration/ Example	
	$= \frac{1}{3} \times [8 \times 6] \times 5$ $= 80 \text{ cm}^3$	

Geometry		
Sum of all interior angles of a regular polygor	1	
Points to Remember	Illustration/ Example	
The sum of interior angles of a polygon having n sides is (2n - 4) right angles $= (2n - 4) \times 90$	 Find the sum of all interior angkes in i) Pentagon ii) Hexagon iii) Heptagon iv) Octagon 	
 (2n-4) x 90. Each interior angle of the polygon = (2n - 4)/n right angles. e.g. What is the sum of the interior angles of a triangle 		

Sum of all interior angles of any polygon Illustration/ Example
Illustration/ Example
NameFigureNo. ofSum of interior anglesNameFigureNo. ofSum of interior anglesSides(2n - 4) right anglesNameFigureSides(2n - 4) right angles
Triangle3 $(2n - 4)$ right angles $= (2 \times 3 - 4) \times 90^{\circ}$ $= (6 - 4) \times 90^{\circ}$ $= 2 \times 90^{\circ}$ $= 180^{\circ}$ Hexagon6 $(2n - 4)$ right angles $= (2 \times 6 - 4) \times 90^{\circ}$ $= (12 - 4) \times 90^{\circ}$ $= 8 \times 90^{\circ}$ $= 720^{\circ}$
Quadrilateral4 $(2n - 4)$ right angles $= (2 \times 4 - 4) \times 90^{\circ}$ $= (8 - 4) \times 90^{\circ}$ $= 4 \times 90^{\circ}$ $= 360^{\circ}$ Heptagon7 $(2n - 4)$ right angles $= (2 \times 7 - 4) \times 90^{\circ}$ $= (14 - 4) \times 90^{\circ}$ $= 10 \times 90^{\circ}$ $= 900^{\circ}$
Pentagon5 $(2n - 4)$ right angles $= (2 \times 5 - 4) \times 90^{\circ}$ $= (10 - 4) \times 90^{\circ}$ $= 6 \times 90^{\circ}$ $= 540^{\circ}$ Octagon8 $(2n - 4)$ right angles $= (2 \times 8 - 4) \times 90^{\circ}$ $= (16 - 4) \times 90^{\circ}$ $= 12 \times 90^{\circ}$ $= 1080^{\circ}$

Geometry		
Sum of all exterior angle	s of any polygon	
Points to Remember		Illustration/ Example
Points to RememberSum of all exterior angles360°e.g.Find the sum of the exteria) a pentagonb) a decagonc) a 15 sided polygond) a 7 sided polygon	of any polygon = or angles of: Answer: 360 ⁰ Answer: 360 ⁰ Answer: 360 ⁰ Answer: 360 ⁰	Illustration/ ExampleFind the measure of each exterior angle of a regular hexagon A hexagon has 6 sides, so $n = 6$ Substitute in the formula Each Exterior angle $= \frac{360}{n}$ Each Exterior angle $= \frac{360}{n}$ $= \frac{360}{60}$ $= 60^{\circ}$ The measure of each exterior angle of a regular polygon is 45°. How many sides does the polygon have? Set the formula equal to 45°. Cross multiply and solve for n $\frac{360}{n} = 45$
		45n = 360 $n = \frac{360}{45} = 8$

Algebra		
Simplifying algebraic expressions		
Points to Remember	Illustration/ Example	
Algebraic expressions are the phrases used in	1) Nine increased by a number x	
algebra to combine one or more variables,	9 + x	
constants and the operational $(+ - x /)$ symbols.		
Algebraic expressions don't have an equals $=$ sign.	2) Fourteen decreased by a number p	
Letters are used to represent the variables or the	14 – p	
constants		
	3) Seven less than a number t	
	t – 7	
	4) The meduat of size and a sumber decreased by size	
	4) The product of nine and a number, decreased by six	
	9111 - 0	
	5) Three times a number increased by seventeen	
	3a + 17	
	6) Thirty-two divided by a number y	
	$32 \div y$	
	7) Five more than twice a number	
	2n + 5	
	8) Thirty divided by seven times a number	
	$30 \div 7n$	

Algebra	
Substitution	
Points to Remember	Illustration/ Example
In Algebra "Substitution" means putting numbers where the letters are	1) If x = 5, then what is $\frac{10}{x} + 4$ $\frac{10}{5} + 4 = 2 + 4 = 6$ 2) If x = 3 and y = 4, then what is $x^2 + xy$ $3^2 + 3 \times 4 = 9 + 12 = 21$ 3) If x = -2, then what is $1 = x + x^2$
	5) If $x = -2$, then what is $1 - x + x^2$ $1 - (-2) + (-2)^2 = 1 + 2 + 4 = 7$

Algebra	
Binary Operations	
Points to Remember	Illustration/ Example
A binary operation is an operation that applies to two	An operation $*$ is defined by $a * b = 3a + b$.
numbers, quantities or expressions e.g. $a*b = 3a + 2b$	Determine:
	i) 2*4
	ii) 4*2
Commutative Law	iii) (2*4)*1
Let * he a hinamy analysism	iv) 2* (4*1)
Let * be a binary operation.	v) Is * associative?
* is said to be commutative if,	vi) Is * communicative?
a * b = b * a	i) $2*4 = 3(2) + 4 = 10$
	ii) $4*2 = 3(4) + 2 = 14$
Associative Law	iii) $(2*4)*1=10*1=3(10)+1=31$
	iv) $2^* (4^{*1}) = 2^* [3(4)+1] = 2^{*13} = 3(2) + 13 = 19$
Let * be a binary operation.	v) Since $(2*4)*1 \neq 2*(4*1)$, * is not associative.
* is said to be an associative if	That is $(a^*b)^*c$, $\neq a^*(b^*c)$
	vi) Since $2*4 * \neq 4*2$, * is not commutative. That is
a * (b * c) = (a * b) * c	$a^*b \neq b^*a$

Algebra	
Solving Linear Equations	
Points to Remember	Illustration/ Example
An equation shows the link between two expressions	1)Solve $2x + 6 = 10$ 2x + 6 = 10 2x = 10-6 2x = 4 $x = \frac{4}{2}$ x = 2
	2) Solve $5x - 6 = 3x - 8$ 5x - 6 = 3x - 8 5x - 3x = -8 + 6 2x = -2 $x = -\frac{2}{2}$ x = -1

Algebra	
Linear Inequalities	
Points to Remember	Illustration/ Example
*Solving linear inequalities is almost exactly like	1) Solve
solving linear equations	x + 3 < 0
* When we multiply or divide by a negative	x <-3
number, we must reverse the inequality	
Why?	2) 3y < 15
For example, from 3 to 7 is an increase , but from	$y < \frac{15}{2}$
-3 to -7 is a decrease	v < 5
-7 -3 3 -7 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10	3) $(x-3)/2 < -5$ (x-3) < -10 x < -7
-7 < -3 7 > 3	4) $-2y < -8$
	divide both sides by -2 and reverse the
The inequality sign reverses (from < to >)	inequality
	$y > \frac{-8}{-2}$ $y > 4$

Algebra	
Changing the Subject of a Formula	
Points to Remember	Illustration/ Example
Formula means	Make x the subject of the formula
Relationship between two or more variables	$\mathbf{y} = \mathbf{x} + 5$
Example: $y = x + 5$ where x and y are variables.	$\mathbf{x} + 5 = \mathbf{y}$
	x = y - 5
Subject Of A Formula means	
The variable on its own, usually on the left hand	Make x the subject of the formula
side.	y = 3x - 6
Example: y is the subject of the formula $y = x + 5$	Switch sides
	3x-6=y
Changing The Subject Of A Formula means	3x = y + 6
Rearrange the formula so that a different variable	<u>y+6</u>
is on its own.	$\mathbf{x} = 3$
Example: Making x the subject of the formula	
y = x + 5 gives $x = y - 5$	Make x the subject of the formula
	y = 2(x+5)
	switch sides
	2(x+5) = y
	Multiply out brackets
	2(x) + 2(5) = y

Algebra	
Changing the Subject of a Formula	
Points to Remember	Illustration/ Example
	2x + 10 = y
	$2\mathbf{x} = \mathbf{y} - 10$
	$\frac{y-10}{2}$
	X = 2
	Make x the subject of the formula
	$y = \frac{x}{2} + 5$
	multiply everything on both sides by 2
	$\frac{x}{2} + 5 = y$
	$2(\frac{x}{2}) + 2(5) = 2(y)$
	$\mathbf{x} + 10 = 2\mathbf{y}$
	$\mathbf{x} = 2\mathbf{y} - 10$
	Make v the subject of the formula
	$E = \frac{1}{2} mv^2$
	Switch sides
	$\frac{1}{2}$ mv ² = E
	Multiply everything across by 2
	$2(\frac{1}{2} \text{ mv}^2) = 2 \text{ E}$
	$mv^2 = 2E$
	$v^2 = \frac{2E}{m}$
	$v = \sqrt{\frac{2E}{m}}$
	Make x the subject of the formula
	$\frac{xw}{t} + p = y$
	Multiply everything on both sides by t
	$t\left(\frac{xw}{t}\right) + tp = ty$
	$\mathbf{x}\mathbf{w} + \mathbf{t}\mathbf{p} = \mathbf{t}\mathbf{y}$
	$\mathbf{x}\mathbf{w} = \mathbf{t}\mathbf{y} - \mathbf{t}\mathbf{p}$
	$x = \frac{\iota y - \iota p}{w}$

Algebra	
Solving Simultaneous Equations (both Linear)	
Points to Remember	Illustration/ Example
*Simultaneous means "at the same time"	Solve simultaneously using the elimination method :
*There are two methods used for solving systems	3x - y = 1eq. (1)
of equations: the elimination method and	2x + 3y = 8eq. (2)
substitution method	
* The elimination method is most useful when one	Eq.(1) x 3 $9x - 3y = 3$
variable from both equations has the same	Eq. (2) x 1 $\underline{2x + 3y = 8}$
coefficient in both equations, or the coefficients	Add both equations $11x = 11$
are multiples of one another.	<u>11</u>
	$\mathbf{x} = 11$
* To use the substitution method, two conditions	x = 1
must be met: there must be the same number of	Substitute $x=1$ into Eq. (1)
equations as variables; and one of the equations	3(1) - y = 1
must be easily solved for one variable	3 - 1 = y
	2 = y
	Solution (1, 2)
	Using the substitution method :
	Make y the subject of the formula in Eq. (1)
	3X - y = 1
	5X - 1 = y Substitute $y = 2y = 1$ into Eq. (2)
	Substitute $y = 3x - 1$ into Eq. (2) 2x + 2(2x - 1) = 9
	2X + 3(3X - 1) = 0 2y + 0y = 2 = 9
	2x + 9x - 3 - 6 11y 3 - 8
	11x - 3 = 0 11x - 8 + 3
	11x = 0 + 3 11x = 11
	11
	$\mathbf{x} = \frac{1}{11}$
	$\mathbf{x} = 1$
	Substitute $x=1$ into Eq. (1)
	3(1) - y = 1
	3 - 1 = y
	2 = y
	Solution (1, 2)

Algebra	
Solving Simultaneous Equations (Linear and Quadratic)	
Points to Remember	Illustration/ Example
	Solve simultaneously:
	2x + y = 7 Eq. (1)
	$x^2 - xy = 6$ Eq. (2)
	From Eq.(1),
	$2\mathbf{x} + \mathbf{y} = 7$
	y = 7 - 2x
	Substituting this value of y into Eq. (2)
	$x^2 - x(7 - 2x) - 6 = 0$
	$x^2 - 7x + 2x^2 - 6 = 0$
	$3x^2 - 7x - 6 = 0$
	(3x+2)(x-3)=0
	$x = \frac{-2}{3}$ or $x = 3$
	Using Eq. 1, when $x = \frac{-2}{3}$
	$y = 7 - 2(\frac{-2}{3})$
	$=7+(\frac{4}{3})$
	$=\frac{25}{3}$
	When $x = 3$
	y = 7 - 2(3)
	= 7 - 6
	= 1
	Solutions: $(\frac{-2}{3}, \frac{25}{3})$ or (3, 1)
Solving a pair of equations in two variables (linear	
and quadratic)	A× //
Use graphs to find solutions to simultaneous	
equations	
$y = x^2 - 5x + 7 \dots$ eq. (1)	
$y = 2x + 1 \dots eq. (2)$	
Set them equal to each other $\frac{2}{2}$	
$X^{2} - 5X + I = 2X + 1$ $x^{2} - 5x - 2x + 7 - 1 = 0$	
x - 3x - 2x + 7 - 1 = 0 $x^{2} - 7x + 6 - 0$	5
x - 7x + 0 - 0 (y 1) (y 6) - 0	X /
x = 1 and $x = 6$	
Substitute into eq. (2)	
When $x = 1$; $y = 2(1) + 1 = 3$	o o o
x = 6; $y = 2(6) + 1 = 13$	
Solutions (1, 3) and (6, 13)	

Algebra	
Indices	
Points to Remember	Illustration/ Example
The laws of indices are used to simplify	Use of $a^0 = 1$
expressions and numbers with indices e.g. $2^5 = 2 x$	
2 x 2 x 2 x 2	$2^{\circ} = 1$
Laws of Indices	Use of $\mathbf{a}^m \mathbf{x} \mathbf{a}^n = \mathbf{a}^{m+n}$
$\mathbf{a}^0 = 1$	$5^1 \times 5^3 = 5^{1+3}$ Using $a^m \times a^n = a^{m+n}$
$a^m \mathbf{v} a^n = a^{m+n}$	= 5 ⁴
a Aa - a	$= 5 \times 5 \times 5 \times 5$
$\mathbf{a}^{\mathbf{m}} \div \mathbf{a}^{\mathbf{n}} = \mathbf{a}^{\mathbf{m} \cdot \mathbf{n}}$	= 625
$(\mathbf{a}^{\mathbf{b}})^{\mathbf{c}} = = \mathbf{a}^{\mathbf{b}\mathbf{c}} = \mathbf{a}^{\mathbf{c}\mathbf{b}}$	Use of $a^m \div a^n = a^{m-n}$
$a^{-n} = \frac{1}{a^n}$	$5(y^9 \div y^5) = 5(y^{9-5})$ Using $a^m \div a^n = a^{m-n}$
	$= 5y^4$
$a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$	Use of $(a^{b})^{c} = =a^{bc} = a^{cb}$
	$(y^2)^6 = y^{2 \times 6}$ Using $(a^m)^n = a^{mn}$
	= y
	Use of $a^{-n} = \frac{1}{a^n}$
	$2^{-2} = \frac{1}{2^2}$ Using $a^{-m} = \frac{1}{a^m}$
	$=\frac{1}{4}$
	Use of $a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$
	$125^{2/3} = (\sqrt[3]{125})^2$ Using $a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$
	$= 5^2$ Recognize cube root of 125 is 5.
	= 25

Algebra

Product of two brackets	
Points to Remember	Illustration/ Example
Find the product of two algebraic expressions	By applying the distributive law
using the distributive law	(x + 4) (x + 3) = x (x + 3) + 4 (x + 3)
(a + b) (c + d) = a (c + d) + b (c + d)	$= x^2 + 3x + 4x + 12$
= ac + ad + bc + bd	$= x^2 + 7x + 12$
(a + b) (c + d + e) = a(c + d + e) + b (c + d + e)	
= ac+ ad + ae + bc + bd + be	

Algebra	
Factorization of Simple expressions	
Points to Remember	Illustration/ Example
In mathematics, factorization is the	Removing a common factor:
decomposition of an expression into a product of	2y + 6 = 2(y + 3)
factors, which when multiplied together gives the	$3y^2 + 12y = 3y(y + 4)$
original. There are four common ways to factorize	
an expression:	Quadratic factorization
	$x^2 + 4x + 3 = (x + 3) (x + 1)$
1) Removing a single common factor	
e.g. $ab + ac - ad = a(b + c - d)$	Factorizing by grouping
2a + 6b + 24c = 2(a + 3b + 12c)	xy - 4y + 3x - 12
	= (xy - 4y) + (3x - 12) = y(x - 4) + 3(x - 4)
2) Quadratic factorization	=(x-4)(y+3)
$a^2 + 2ab + b^2 = (a+b)(a+b)$	
	$x^3 + 2x^2 + 8x + 16$
3) Factorizing by grouping- Group the terms	$= (x^{3} + 2x^{2}) + (8x + 16) = x^{2}(x + 2) + 8(x + 2)$
in pairs so that each pair of terms has a	$=(x+2)(x^2+8)$
common factor	
am + cn + dn + bm	Difference of two squares
= am + bm + an + bn	$4x^{2} - 9 = (2x)^{2} - (3)^{2} = (2x+3)(2x-3)$
= m(a+b) + n(a+b) (a+b) is now a common factor	
= (a+b) (m+n)	
4) Difference of two squares	
$(a+b)(a-b) = a^2 - b^2$	

Algebra	
Solving quadratic inequalities	
Points to Remember	Illustration/ Example
 Points to Remember To solve a quadratic inequality: Find the values of x when y = 0 In between these values of x , are intervals where the y values are either greater than zero (>0), or less than zero (<0) To determine the interval either: Draw the graph or Pick a test value to find out which it is (>0 or <0) 	Solve $-x^2 + 4 < 0$ Find out where the graph crosses the x-axis $-x^2 + 4 = 0$ $x^2 - 4 = 0$ (x + 2)(x - 2) = 0 x = -2 or $x = 2To solve the original inequality, I need to find theintervals where the graph is below the axis i.e the yvalues are less than zero.$
	Then the solution is clearly: $x < -2$ or $x > 2$

Relations, Functions and Graphs Relations and Functions

Points to Remember

This graph shows a function, because there is no vertical line that will cross this graph twice.

This graph does not show a function, because any number of vertical lines will intersect this oval twice. For instance, the *y*axis intersects (crosses) the line twice.

* A relation is a set of ordered pairs in which the first set of elements is called the domain and the second set of elements the range or co-domain * Relations can be expressed in three ways: as expressions; as maps or diagrams; or as graphs *A function is a mathematical operation that assigns to each input number or element, exactly one output number or value

* Maximum and minimum points on a graph are found where the slope of the curve is zero

Given the graph of a relation, if you can draw a vertical line that crosses the graph in more than one place, then the relation is not a function. Here are a couple examples:

domain	range	
-3 -2 -1 0 1	-6 -1 0 3 15	This is a function. There is only one y for each x ; there is only one arrow coming from each x .
domain	range	
$\begin{array}{c} -3 \\ -2 \\ -1 \\ 0 \\ 1 \end{array}$	-6	This <i>is</i> a function! There is only one arrow coming from each <i>x</i> ; there is only one <i>y</i> for each <i>x</i>
domain -3 -2 -1 0 1	range -6 -1 0 3 +15	This one is not a function: there are <i>two</i> arrows coming from the number 1; the number 1 is associated with two <i>different</i> range elements. So this is a relation, but it is not a function.
domain -3 -2 0 1 16	range → -6 → -1 → 0 → 3 → 15	Each element of the domain has a pair in the range. However, what about that 16? It <i>is</i> in the domain, but it has no range element that corresponds to it! This is neither a function nor a relation

Relations, Functions and Graphs				
Composite Functions & Inverses				
Points to Remember	Illustration/ Example			
"Function Composition" is applying one function	Given $f(x) = 2x + 3$ and $g(x) = -x^2 + 5$, find $(f \circ g)(x)$.			
to the results of another:	$(f \circ g)(x) = f(g(x))$			
The result of $f()$ is sent through $g()$	$= f (-x^{2} + 5)$ = 2() + 3 setting up to insert the input formula = 2(-x^{2} + 5) + 3 = -2x^{2} + 10 + 3 = -2x^{2} + 13			
It is written: $(g \circ f)(x)$	Given $f(x) = 2x + 3$ and $g(x) = -x^2 + 5$, find $(g \circ f)(x)$.			
Which means: g(f(x))	= g(2x + 3) = - () ² + 5 setting up to insert the input = - (2x + 3) ² + 5 = - (4x ² + 12x + 9) + 5 = - 4x ² - 12x - 9 + 5 = - 4x ² - 12x - 4			
	Find $(f \circ g)(2)$ using $(f \circ g)(x) = -2x^2 + 13$			
	$(f \circ g)(2) = -2 (2)^2 + 13 = -8 + 13 = 5$ OR Find $g(2) = -2^2 + 5 = -4 + 5 = 1$ Then $f[g(2)] = 2 (1) + 3 = 5$			
The inverse of a function has all the same points as the original function, except that the x 's and y 's have been reversed.	Given $f(x) = 2x - 1$ and $g(x) = (\frac{1}{2})x + 4$, find i) $f^{-1}(x)$, ii) $g^{-1}(x)$			
For instance, supposing your function is made up of these points: { $(1, 0), (-3, 5), (0, 4)$ }. Then the inverse is given by this set of points:	iii) $(f \circ g)^{-1}(x)$, and iv) $(g^{-1} \circ f^{-1})(x)$.			
$\{(0, 1), (5, -3), (4, 0)\}$	First, find $f^{-1}(x)$, $g^{-1}(x)$, and $(f \circ g)^{-1}(x)$:			
	Inverting $f(x)$: $f(x) = 2x - 1$			
	Let $y = 2x - 1$ Interchange $x = 2y - 1$ Make y the subject x + 1 = 2y $\frac{x+1}{2} = y$ Hence, $f^{-1}(x) = \frac{x+1}{2}$			
Relations, Functions and Graphs				
---	--	--	--	--
Composite Functions & Inverses				
Points to Remember	Illustration/ Example			
	Inverting g(x): g(x) = $\frac{1}{2}x + 4$			
	Let $y = \frac{1}{2}x + 4$			
	Interchange $x = \frac{1}{2}y + 4$			
	$x - 4 = \frac{1}{2} v$			
	$2^{2} 2^{2}$ 2(x - 4) = y			
	$2\mathbf{x} - 8 = \mathbf{y}$			
	Hence			
	$g^{-1}(x) = 2x - 8$			
	Finding the composite function:			
	$(f \circ g)(x) = f[g(x)] = f[\frac{1}{2}x + 4]$			
	$= 2[\frac{1}{2}x+4] - 1 = x+8-1 = x+7$			
	Inverting the composite function:			
	$(f \circ g)(x) = x + 7$			
	Let $y = x + 7$ Interchange $x = y + 7$			
	Make v the subject			
	x - 7 = y			
	$(f_{0}, r)^{-1}(r) = r - 7$			
	$(J \circ g)^{-1}(x) = x - I$ Now compose the inverses of $f(x)$ and $g(x)$ to find the			
	formula for $(g^{-1} \circ f^{-1})(x)$:			
	$(g^{-1} \circ f^{-1})(x) = g^{-1}[f^{-1}(x)]$			
	$= g^{-1}\left(\frac{x+1}{2}\right)$			
	$= 2\left(\frac{x+1}{x+1}\right) - 8$			
	$= 2\binom{2}{2}$			
	-(x+1)-8 Hence,			
	$(q^{-1} \circ f^{-1})(r) = r - 7$			
	$(\mathbf{g} \circ \mathbf{j}) (\mathbf{x}) = \mathbf{x} \cdot \mathbf{j}$			
	The inverse of the composition $(f \circ g)^{-1}(x)$ gives the			
	same result as does the composition of the inverses			
	$(g^{-1} \circ f^{-1})(x).$			
	We therefore conclude that			
	$(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x)$			

Relations, Functions and Graphs	
Introduction to Graphs	
Points to Remember	Illustration/ Example
Parts of the quadratic graph:	Plot $y = x^2 - x - 12$ for $-4 \le x \le 5$
The bottom (or top) of the U is called the vertex, or the turning point. The vertex of a parabola opening upward is also called the minimum point. The vertex of a parabola opening downward is also called the maximum point. The <i>x</i> -intercepts are called the roots, or the zeros. To find the <i>x</i> -intercepts, set $ax^2 + bx + c = 0$.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
The ends of the graph continue to positive infinity (or negative infinity) unless the domain (the <i>x</i> 's to be graphed) is otherwise specified. The parabola is symmetric (a mirror image) about a vertical line drawn through its vertex (turning point).	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Axis of Symmetry	From the graph: The values of x for which f(x) = 0 are x = -3 and x = 4 (roots or x intercept) The value of x for which f(x) is minimum is x = 1/2 (line of symmetry) The minimum value of f(x) = -12.25 The v-intercept is -12 (when x = 0; y = -12)

Relations, Functions and Graphs

Introduction to Granhs	
Points to Remember	Illustration/ Example
Standard form	By Calculation:
A quadratic function is written as $y = ax^2 + bx + c$	1) The values of x for which $f(x) = 0$
1	a = 1, b = -1, c = -12
Roots	
Can be found by factorization.	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2}$
It can also be found using the quadratic formula	a = 2a
which gives the location on the x-axis of the two	$-1 \pm \sqrt{(-1)^2 - 4(1)(-12)}$
roots and will only work if a is non-zero. $-h \pm \sqrt{h^2 - 4ac}$	$\mathbf{x} = \frac{1}{2(1)}$
$x = \frac{2 \pm \sqrt{2}}{2a}$	$-1 \pm \sqrt{1+48}$ $-1 \pm \sqrt{49}$ -1 ± 7
Axis of symmetry	$x \equiv \frac{2}{2} \equiv \frac{2}{2} \equiv \frac{2}{2}$
$\mathbf{x} = \frac{-b}{2a}$	$x = \frac{-1+7}{2} = \frac{6}{2} = 3$ or $x = \frac{-1-7}{2} = \frac{-8}{2} = -4$
Completing the Square	2) The value of x for which $f(x)$ is minimum
When $f(x)$ is written in the form $y=a(x - h)^2 + k$	$-\underline{b}$ $-(-1)$ $\underline{1}$
(h, -k) is the maximum or minimum point	$\mathbf{x} = \overline{2a} = \overline{2(1)} = \overline{2}$
The v-intercept is found by asking the question:	3) The minimum value of $f(x)$
When $x = 0$, what is y?	- complete the square or
	i.e. write $f(x)$ in the form $y = a(x - h)^2 + k$
	$y = x^2 - x - 12$
	$y = x^2 - x + \left(\frac{1}{2}\right)^2 - 12 - \left(\frac{1}{2}\right)^2$
	$y = (x - \frac{1}{2})(x - \frac{1}{2}) - 12 - \frac{1}{4}$
	(2)(2)
	$y = \left(x - \frac{1}{2}\right) - \frac{1}{4}$
	$a(x-h)^2 + k = \left(x - \frac{1}{2}\right)^2 - \frac{49}{4}$
	This implies that $h = \frac{1}{2}$ and $k = \frac{-49}{4}$
	So the minimum value of $f(x)$ is $\frac{-49}{4}$ or -12.25
	1 -49
	The minimum point is $(\overline{2}, \overline{4})$
	4) The y-intercept :
	When $x = 0$
	$y = 0^2 - 0 - 12 = -12$

Relations, Functions and Graphs							
Non-Linear Relations							
Points to Remember	Illustration/ Example						
Exponential functions involve exponents, where the variable is now the power. We encounter non-linear relations in the growth of population with time and the growth of invested money at compounded interest rates	Draw the graph of $y=2^{x}$ $x y=2^{x}$ $0 2^{0} = 1$ $1 2^{1} = 2$ $2 2^{2} = 4$ $3 2^{3} = 8$ $4 2^{4} = 16$ $5 2^{5} = 32$						

Relations, Functions and Graphs	
Direct & Inverse Variation	
Points to Remember	Illustration/ Example
Direct Variation	Example of Direct Variation:
The statement " y varies directly as x ," means that	If y varies directly as x, and $y = 15$ when $x = 10$, then
when <i>x</i> increases, <i>y</i> increases <i>by the same factor</i> .	what is y when $x = 6$?
y α x	
Introducing the constant of proportionality, k	Find the constant of proportionality:
$\mathbf{y} = \mathbf{K}\mathbf{x}$	$y \alpha x$ y = ky, use (10, 15)
	y = kx use (10, 13) 15 - k (10)
Other examples of direct variation:	15 - 1
The circumference of a circle is directly	$\frac{1}{10} = K$
proportional to its radius.	3
	$\frac{3}{2} = \mathbf{k}$
	Therefore the equation becomes
	$y = \frac{3}{2}x$
	Substitute $x = 6$
	$y = \frac{3}{2}(6)$
	2
	y = 9
	Solution (6, 9)
T T	If a variage invariable as x_{i} and $y = 10$ when $x = 6$, then
Two quantities are inversely proportional if an	what is v when $r = 15$?
increase in one quantity leads to a reduction in the	what is y when $x = 15$.
other.	$y \alpha \frac{1}{x}$
	$y = \frac{k}{2}$
	y - x
	$10-\frac{k}{2}$
	6
	k = 60
	Therefore, the equation becomes
	$y = \frac{60}{2}$
	When $x = 15$
	$v = \frac{60}{4} = 4$
	⁷ 15
	Solution (6, 4)

Coordinate GeometryPoints to RememberIllustration/ Example(Gradient of line $y_1 = y_2$ $x_1 \in x_2$, where m is the gradient, and $y = c$ is the value where the line cuts the y_2 axis. This number c is called the intercept on the y -axis(Gradient of Parallel LinesOn a graph, parallel lines have the same gradient. For example, $y = 2x + 3$ and $y = 2x + 4$ are parallel because they both have a gradient of 2.(Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = \frac{4}{3}$ (Use the point $(1, 5)$) $y = 4$	Relations, Functions and Graphs					
Points to Remember Illustration/Example d) Equation of line The general equation of a straight line is $y = mx + c$, where m is the gradient, and $y = c$ is the value where the line cuts the y- axis. This number c is called the intercept on the y-axisc) Gradient of line $\frac{y_1 - y_2}{x_1 - x_2}$ e) Gradients of Parallel Lines On a graph, parallel lines have the same gradient. For example, $y = 2x + 3$ and $y = 2x - 4$ are parallel because they both have a gradient of 2.d) Equation of line: $y = \frac{4}{3} x + c$ (use the point $(1, 5)$) $s = \frac{4}{3} (1) + c$ f) Gradients of Perpendicular Lines The product of the gradient of perpendicular lines will always be -1. If lines are perpendicular, $M1 \times M2 = -1$ d) Equation is $y = \frac{4}{3} x + \frac{11}{3}$ f lines are perpendicular, $M1 \times M2 = -1$ $\frac{4}{3} \times m_2 = -1$ $\frac{4}{3} \times m_2 = -1$ $\frac{4}{3} \times \frac{1}{4} = \frac{1}{4} = \frac{2}{3}$ f) Equation of perpendicular bisector $y = \frac{-3}{4} + c$ (use the midpoint $(-\frac{1}{2}, 3)$) $3 = -\frac{3}{4} (-\frac{1}{2}) + c$	Coordinate Geometry					
d) Equation of line The general equation of a straight line is y = mx + c, where m is the gradient, and $y =z$ is the value where the line cuts the y- axis. This number c is called the intercept on the y-axis e) Gradients of Parallel Lines On a graph, parallel lines have the same gradient of 2. f) Gradients of Perpendicular Lines The product of the gradient of perpendicular lines will always be -1. If lines are perpendicular, M1 × M2 = -1 if lines are perpendicular, M1 × M2 = -1 if $\frac{y}{4}$	Points to Remember		Illustration/ Example			
e) Gradients of Parallel Lines On a graph, parallel lines have the same gradient. For example, $y = 2x + 3$ and $y = 2x + 3$ and $y = 2x + 4$ are parallel because they both have a gradient of 2. f) Gradient sof Perpendicular Lines The product of the gradient of perpendicular lines will always be -1. If lines are perpendicular, $M1 \times M2 = -1$	d)	Equation of line The general equation of a straight line is y = mx + c, where m is the gradient, and y = c is the value where the line cuts the y- axis. This number c is called the intercept on the y-axis	c) Gradient of line $\frac{y_1 - y_2}{x_1 - x_2}$ $= \frac{5-1}{1-2} = \frac{4}{3}$			
f) Gradients of Perpendicular Lines The product of the gradient of perpendicular lines will always be -1. If lines are perpendicular, M1× M2 = -1	e)	Gradients of Parallel Lines On a graph, parallel lines have the same gradient. For example, $y = 2x + 3$ and $y = 2x - 4$ are parallel because they both have a gradient of 2.	d) Equation of line: y = mx + c $y = \frac{4}{3}x + c$ (use the point (1, 5)) $5 = \frac{4}{3}(1) + c$			
If lines are perpendicular, M1× M2 = -1 Gradient M ₁ g = $\frac{4}{3}$ x + $\frac{11}{3}$ e) Gradient of any perpendicular to the line $m_1 \times m_2 = -1$ $\frac{4}{3} \times m_2 = -1$ $m_2 = -1 \div \frac{4}{3}$ $m_2 = \frac{-3}{4}$ f) Equation of perpendicular bisector y = mx + c $y = \frac{-3}{4} x + c$ (use the midpoint $(-\frac{1}{2}, 3)$) $3 = \frac{-3}{4} (-\frac{1}{2}) + c$ $3 = \frac{3}{8} + c$	f)	Gradients of Perpendicular Lines The product of the gradient of perpendicular lines will always be -1.	$5 - \frac{4}{3} = c$ $\frac{11}{3} = c$			
$3 - \frac{3}{8} = c$ $\frac{21}{8} = c$ Equation of perpendicular bisector is	-9 -8	If lines are perpendicular, $M1 \times M2 = -1$	Equation is $y = \frac{4}{3}x + \frac{11}{3}$ e) Gradient of any perpendicular to the line $m_1 \times m_2 = -1$ $\frac{4}{3} \times m_2 = -1$ $m_2 = -1 \div \frac{4}{3}$ $m_2 = \frac{-3}{4}$ f) Equation of perpendicular bisector y = mx + c $y = \frac{-3}{4}x + c$ (use the midpoint $(-\frac{1}{2}, 3)$) $3 = \frac{-3}{4}(-\frac{1}{2}) + c$ $3 = \frac{3}{8} + c$ $3 - \frac{3}{8} = c$ $\frac{21}{8} = c$ Equation of perpendicular bisector is			

Relations, Functions and Graphs	
Linear Programming	
Points to Remember	Illustration/ Example
Linear programming is the process of taking various linear inequalities relating to some situation, and finding the "best" value obtainable under those conditions. A typical example would be taking the limitations of materials and labor, and then determining the "best" production levels	Suppose that the three (3) inequalities are related to some situation. $ \begin{cases} x+2y \le 14 \\ 3x-y \ge 0 \\ x-y \le 2 \end{cases} \Rightarrow \begin{cases} y \le -\frac{1}{2}x+7 \\ y \le 3x \\ y \ge x-2 \end{cases} $
for maximal profits under those conditions.	These inequalities can be represented on a graph:
	To draw the line $y = -\frac{1}{2}x + 7$:
	When $x = 0$, $y = 7$ and when $y=0$, $x = 14$ Therefore, coordinates on the line are $(0, 7)$ and $(14,0)$ To draw the line $y = 3x$ When $x = 0$, $y = 0$ and say when $x = 2$, $y = 6$ Coordinates on the line are $(0,0)$ and $(2,6)$ To draw the line $y=x - 2$ When $x = 0$, $y = -2$ and when $y = 0$, $x = 2$ Coordinates on the line are $(0, -2)$ and $(2,0)$
	Suppose the profit is given by the equation "P = $3x + 4y$ " To find maximum profit:
	The corner points are $(2, 6)$, $(6, 4)$, and $(-1, -3)$. For linear systems like this, the maximum and minimum values of the equation will always be on the corners of the shaded region. So, to find the solution simply plug these three points into "P = $3x + 4y$ ". (2, 6): P = $3(2) + 4(6) = 6 + 24 = 30$ (6, 4): P = $3(6) + 4(4) = 18 + 16 = 34$ (-1, -3): P = $3(-1) + 4(-3) = -3 - 12 = -15$ Then the maximum of $P = 34$ occurs at (6, 4), and the minimum of $P = -15$ occurs at (-1, -3)

Relations Functions and Graphs					
Distance - Time Graphs					
Points to Remember	Illustration/ Example				
Speed, Distance and Time The following is a basic but important formula which applies when speed is constant (in other words the speed doesn't change) Speed = $\frac{Distance}{Time}$	Inustration/ ExampleExamplea) Jane runs at an average speed of 12.5 m/s in a race journey of 500 metres. How long does she take to complete the race?To find a time, we need to divide distance by speed. 500 metres ÷ 12.5 m/s = 40 secsb) Chris cycles at an average speed of 8 km/h.				
If speed does change, the average (mean) speed can be calculated: Average speed = $\frac{\text{Total Distance}}{\text{Total Time Taken}}$	If he cycles for $6\frac{1}{2}$ hours, how far does he travel? To find a distance, we need to multiply speed by tim 8 km/h × 6.5 hours = 52 km				
Distance - Time Graphs These have the distance from a certain point on the vertical axis and the time on the horizontal axis. The velocity can be calculated by finding the gradient of the graph. If the graph is curved, this can be done by drawing a chord and finding its gradient (this will give average velocity) or by finding the gradient of a tangent to the graph (this will give the velocity at the instant where the tangent is drawn). A Distance - Time Graph distance	distance in m 6 5 6 5 6 5 6 5 6 7 6 5 7 6 5 7 6 5 7 6 5 7 6 7 7 6 5 7 7 7 6 5 7 7 7 7				
not moving returning to A driving away from A time	a) Change 15km/h into m/s. $15 \text{ km/h} = \frac{15 \text{ km}}{1 \text{ hour}}$ $= \frac{15 \text{ km}}{60 \text{ min}}$ $= \frac{15000 \text{ m}}{3600 \text{ secs}}$ $= 4\frac{1}{6} \text{ m/s}$				

<u>Units</u> When using any formula, the units must all be consistent. For example speed could be measured in <i>m/s</i> , in terms of distance in metres and time in seconds or in <i>km/h</i> in terms of distance in kilometres and time in hours.	 b) Example If a car travels at a speed of 10m/s for 3 minutes, how far will it travel? i. Firstly, change the 3 minutes into 180 seconds, so that the units are consistent. ii. Now rearrange the first equation to get distance = speed × time. iii. Therefore distance travelled = 10m × 180 = 1800m = 1.8 km
In calculations, units must be consistent, so if the units in the question are not all the same e.g. <i>m/s</i> , and <i>km/h</i> , then you must first convert all to the same unit at the start of solving the problem.	 c) A car starts from rest and within 10 seconds is travelling at 10m/s. What is its acceleration? Acceleration =

Relations Functions and Graphs					
Velocity - Time Graphs					
Points to Remember	Illustration/ Example				
Velocity and Acceleration Velocity is the speed of a particle <u>and</u> its direction of motion (therefore velocity is a vector quantity, whereas speed is a scalar quantity). When the velocity (speed) of a moving object is increasing we say that the object is <i>accelerating</i> . If the velocity decreases it is said to be decelerating. Acceleration is therefore the rate of change of velocity (change in velocity / time) and is measured in m/s ² .	Example Consider the motion of the object whose velocity-time graph is given in the diagram. a) What is the acceleration of the object between times $t = 0$ and $t = 2$? b) What is the acceleration of the object between times $t = 10$ and $t = 12$? c) What is the net displacement of the object between times $t = 0$ and $t = 16$? $ \int_{a}^{b} \int_{a}^{b$				

Relations Functions and Graphs	
Velocity - Time Graphs	
Points to Remember	Illustration/ Example
Velocity-Time Graphs/ Speed-Time GraphsA velocity-time graph has the velocity or speed of an object on the vertical axis and time on the horizontal axis.The distance travelled can be calculated by finding the area under a velocity-time graph. If the graph is curved, there are a number of ways of estimating the area.	 a) The velocity-time graph is a straight-line between t=0 and t=2, indicating constant acceleration during this time period. Hence, a = change in velocity / change in time = ⁸⁻⁰/₂ = 4 ms⁻² b) The velocity-time graph graph is a straight-line between t = 10 and t = 12, indicating constant acceleration during this time period. Hence,
Acceleration is the gradient of a velocity-time graph and on curves can be calculated using chords or tangents. A Velocity - Time Graph	a = $\frac{change in \ velocity}{change in \ time} = \frac{4-8}{2} = -2 \ ms^{-2}$ The negative sign indicates that the object is decelerating.
velocity constant velocity accelerating time The distance travelled is area under graph. The acceleration and deceleration can be found by finding the gradient of the lines.	c) The net displacement between times t = 0 and t = 16 equals the area under the velocity-time curve, evaluated between these two times. Recalling that the area of a triangle is half its width times its height, the number of grid-squares under the velocity-time : = Area of triangle + Area of Square + Area of Trapezium + Area of Square = $\frac{1}{2}$ (b)(h) + (s x s) + $\frac{1}{2}$ (h)(a+b) + (s x s) = $\frac{1}{2}$ (2)(8) + (8x8) + $\frac{1}{2}$ (2)(4+8) + (4x4) = 8 + 64 + 12 + 16 = 100 m

Statistics							
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph							
Points to Remember	Illustration/ Example						
* A Pie Chart uses "pie slices" to show relative sizes of data	The table shows the result of a survey of your friends, to find out which kind of movie they liked best. Draw 1) A Pie Chart 2) A bar Graph to represent the information						
		Favor	ite Type of	Movie			
	Comedy	Action	Romance	Drama	SciFi		
	4	5	6	1	4		
	Total numb	er of friend	ds = 20				
	% liking Co	omedy: 4/2	$0 \ge 100 = 2$	20			
	% liking A	ction: 5/20	x 100 = 25				
	% liking Ro	omance: 6/	20 x 100 =	30			
	% liking Drama: 1/20 x 100 = 5 % liking SciFi: 4/20 x 100 = 20 Example: Pie Chart sci-fi: 4 (20%) drama: 1 (5%) comedy: 4 (20%) action: 5 (25%)						

Statistics						
Displaying data: Pie Chart, Bar Graph, Histogr	am and	Line Gra	ph			
Points to Remember	Illustration/ Example					
Line Graph - A graph that shows information	You a	re learning	g facts abou	t dogs, and	each day y	ou do
that is connected in some way (such as change	a short test to see how good you are. Draw a line graph					graph
over time)	to represent the information:					
			Facts I g	ot Correct		
		Day 1	Day 2	Day 3	Day 4	
		3	4	12	15]
	Exam 20 15 10 5	ple: Line C	Graph Facts I (12 Day 3	15 Day 4	

Statistics					
Frequency Distribution					
Displaying data on the Bar Graph					
Measure of Central Tendency – Mean, Median and Mode					
Points to Remember	Illustration/ Example				
The frequency of a particular data value is the number of times the data value occurs	Rick did a survey of how many games each of 20 friends owned, and got this: 9, 15, 11, 12, 3, 5, 10, 20, 14, 6, 8, 8, 12, 12, 18, 15, 6,				
A frequency table is constructed by arranging collected data values in ascending order of magnitude with their corresponding frequencies The Mean is the average of the numbers. Add up all the numbers, then divide by how many numbers there are $mean = \frac{\Sigma xf}{\Sigma f}$	 9, 18, 11 a) Find the Mode b) Find the Median c) Show this data in a frequency table d) Calculate the mean e) Draw a histogram to represent the data 				

Statistics						
Frequency Distribution						
Displaying data on the Bar Graph						
Measure of Central Tendency – Mean, Median a	nd	Mode				
Points to Remember	Illustration/ Example					
To find the Median , place the numbers in value	a) Mode is 12 (occurs most often)					
order and find the middle number (or the mean of	b) To find the median, first order the data then find the					
the middle two numbers).	m	ean of the 10 th	and 11 th value	s:		
	3,	5, 6, 6, 8, 8, 9, 9	9, 10, 11, 11 , 12	, 12, 12, 14, 15,	15, 18, 18, 20	
To find the Mode or model value, place the	М	dedian = $\frac{11+11}{2}$	$=\frac{22}{2}=11$			
numbers in value order then count how many of	c)	Frequency ts	able for the m	umber of gam	es owned.	
each number. The Mode is the number which		Number of		Frequency	es owned.	
appears most often (there can be more than one		games(x)	Tally	(f)	xf	
mode):	-	guines (x)	1	(1)	3	
mode).	-	5		1	5	
		5	<u> </u>	1	<u> </u>	
	-	6		2	12	
	-	8	<u> </u>	2	16	
		9	<u> </u>	2	18	
		10		1	10	
		11		2	22	
		12		3	36	
		14		1	14	
		15	II	2	30	
		18	=	2	36	
		20		1	20	
				$\Sigma f = 20$	$\Sigma x f = 222$	
		d) mean = e)	$\frac{\Sigma xf}{\Sigma f} = \frac{222}{20} = 12$	1.1		
		3.5 3.0 2.5 2.0 1.5 1.0 0.5			Frequency (f)	
		0.0 1 2	3 4 5 6 7 8 Numbe	9 10 11 12 13 14 19 er of Games	51617181920	

Statistics										
Frequency Distribution										
Displaying data on the Bar Graph										
Measure of Central Tendency – Mean, Median	and Mo	ode								
Points to Remember	Illus	Illustration/ Example								
* When the set of data values are spread out, it is	The lengths of ribbon required to wrap 40									
difficult to set up a frequency table for every data	pres	presents are as follows:								
value as there will be too many rows in the table.	1 7	2.1	22	20	07	27	20	2.4	10	22
So we group the data into class intervals (or	1/	31	23	29	27	31	28	34	42	23
groups) to help us organize, interpret and analyze	12	22	18	26	24	30	41	14	29	22
the data.	12		10	20	21	50		1 1	2)	
*The values are grouped in intervals (classes) that	21	32	28	19	27	25	38	39	21	40
have the same width. Each class is assigned its										
corresponding frequency.	26	27	26	30	33	20	28	35	29	31
Class Limits	Con	atrua	t o (Trour	ad 1	Fragu	onau	Tak	la fo	\ F
Each class is limited by an upper and lower limit	the	follo	l a (JIOUL John	beu 1	riequ	lency	1 at)1
	the	10110	WIIIE	g uata	1.					
Class width is the difference between the										
upper and lower limit of that particular class	Le	ength o	of	Mid	 -	Frea	uencv		xf	
upper and lower mint of that particular class	F F	Ribbor	n	Interv	val	(f)			
Class Mark/ Mid-Interval Value	_	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-)				
The class mark is the midpoint of each interval and		(cm) 6 10		× urue 8	(11)		0		0	
is the value that represents the whole interval for	1	11 15		12			0 7		26	
the calculation of some statistical parameters and	1	11 - 13		13			<u>ک</u>	-	20	
for the histogram	1	$\frac{6-20}{1-20}$)	18			4	_	12	
	2	1 - 25)	23			8	_	184	
	2	6 – 30)	28]	4		392	
	3	1 - 35	5	33			6		198	
Estimating the Mode from a Histogram	3	6-40)	38			4		152	
Estimating the word from a mistogram	4	1 - 45	5	43			2		86	
1. Identify the tallest bar. This represents the						Σf	=40	Σ	xf = 1	110
2 Join the tips of this har to those of the	Wea	ean est	timate	e the N	Aean	by us	ing the	e mić	Inoin	ts
neighbouring bars on either side with the			innau	e une r	Icun	l og us	ing th		pom	
one on the left joined to that on the right	moa	$n - \frac{\Sigma}{2}$	xf_ 1	1110 _	77 7	5				
and vice-versa. The lines used to join these	mea	Σ	f	40 _	21.1.	5				
tips cross each other at some point in this	T 1									
bar.	the	media	n 18 1	the me	an ol	the m	iiddle	two i	umbe	ers
3. Drop a perpendicular line from the tip of	(the	20° and n	lu 21 The m	valu	es an	un is C	$are bo6_{-30}$	Jui II The i	n the 2	n an
the point where these lines meet to the base	also	be fou	ind fr	om a	cum	ilative	freau	encv	curve	(the
of the bar (horizontal axis). The point	seco	nd au	artile	value))	~1411 V C	noqu	ency		(inc
where it meets the base is the mode.		1.00)						

Statistics						
Cumulative Frequency Curve (Ogive)						
Interquartile Range and Semi-Interquartile Range	ge					
Points to Remember	Illustration/ Example					
A Cumulative Frequency Graph is a graph	We need to add a class with 0 frequency before the					
plotted from a cumulative frequency table. A	first class and then find the upper boundary for each					
cumulative frequency graph is also called an ogive	class inte	erval				
or cumulative frequency curve	Length	Frequency	Upper	Length	Cumulative	
The total of the frequencies up to a particular value	(<i>cm</i>)		Boundary	(<i>x</i> cm)	Frequency	
is called the cumulative frequency	6 - 10	0	10.5	<i>x</i> ≤ 10.5	0	
The lower quartile or first quartile (Q_1) is the value found at a quarter of the way through a set of	11 - 15	2	15.5	<i>x</i> ≤ 15.5	2	
	16 - 20	4	20.5	$x \le 20.5$	6	
data	21 - 25	8	25.5	<i>x</i> ≤ 25.5	14	
The median or second quantile $(0, \cdot)$ is the value	26 - 30	14	30.5	<i>x</i> ≤ 30.5	28	
found at half of the way through a set of data	31 - 35	6	35.5	<i>x</i> ≤ 35.5	34	
	36 - 40	4	40.5	<i>x</i> ≤ 40.5	38	
The upper quartile (Q_3) is the value found at	41 - 45	2	45.5	<i>x</i> ≤ 45.5	40	
three quarters of the way through a set of data		$\Sigma f = 40$				
The Interquartile range is the difference between the upper and lower quartile: $Q_3 - Q_1$ Semi-interquartile range = $\frac{1}{2}(Q_3 - Q_1)$	40 35 30 25 10 15 10 10 5 0 2 15 10 2 15 10 5 0 2 2 15 10 5 0 2 15 10 10 5 0 2 15 10 10 5 0 2 15 10 10 5 0 2 10	7 10.5 15.5 20 5 5 5 7 7 10 Range = erquartile R	5 25.5 30.5 = Q3 - Q1 = ange = $\frac{1}{2}$ (C	355 40.5 4 355 40.5 4 ngth (mm) = 31.5- 23 Q3 - Q1) =	5 = 8 1/2 (8) = 4	
Consumer Arithmetic						
Ready Reckoner						

Points to Remember	Illustration/ Example							
A ready reckoner is a table of numbers used to	The table shows an extract from a ready reckoner							
facilitate simple calculations, especially one for	giving the price of N articles at 27 cents each.							
applying rates of discount, interest, charging, etc.,								
to different sums	N		N		N		N	
	21	5.67	63	17.01	105	28.35	500	135.00
	22	5.94	64	17.28	106	28.62	525	141.75
	23	6.21	65	17.55	107	28.89	550	148.50
	24	6.48	66	17.82	108	29.16	600	162.00
	25	6.75	67	18.09	109	29.43	625	168.75
	26	7.02	68	18.36	110	29.70	650	175.50
	27	7.29	69	18.63	111	29.97	700	189.00
	28	7.56	70	18.90	112	30.24	750	202.50
	29	7.83	71	19.17	113	30.51	800	216.00
	30	8.10	72	19.44	114	30.78	900	243.00
	1) Di 2) Fr 3) $6\frac{1}{2}$ m \$16 He: 4)Th	(he table) (he t	to fin rticles article m of r kg of rom th table: of 50 of 71 of 57 5. To u \$6.75 cost o of 729 00 + \$ e the c	and the co at 27 ce s at 27 c material foodstuf ne table, 0 article articles 1 articles 1 articles 2 articles	ost of: ints eac ints eac ints eac ints eac at 27 c ff at 27 the co s = \$1 = \$ ables w 3.75. in is $\$ = 1$ cents = 1 ables w 3.75. ables \$ = 1 ables w bbles w bb	ch ach cents ead cents p st is \$6. 35.00 <u>19.17</u> 54.17 re find t $\frac{168.75}{100} =$ each is: 3 s \$ <u>196.8</u> 196.8	ch ber kilog 21 he cost \$ 1.69 $\frac{33}{2} = $ \$ 1	gram of 625 9.68

Consumer Arithmetic	
Foreign Exchange Rates	
Points to Remember	Illustration/ Example
Foreign exchange, is the conversion of one country's currency into that of another	Amelia is going on a holiday to Italy, so she will have to purchase some euros (€). How many euros will she get for £375 if the exchange rate is £1 = €1.2769? Give your answer to the nearest euro. $\pounds 1 = \pounds 1.2769$ $\pounds 375 = \frac{1.2769}{1} \times 375$ $= \pounds \frac{1.2769}{1} \times 375$
	= \$ 478.8375 Change US\$80 to TT\$, given that TT\$1.00 = US\$6.35 US \$6.35 = TT\$ 1.00 US \$1.00 = TT\$ $\frac{1.00}{6.35}$ US \$ 6.35 = TT\$ $\frac{1.00}{6.35}$ x 80 = TT\$ 12.59

Consumer Arithmetic	
Hire Purchase	
Points to Remember	Illustration/ Example
Goods purchased on hire purchase are paid for at regular intervals over a specified period of time. Sometimes the purchaser may pay a deposit, then the remainder (cash price- deposit + interest) is	A bicycle can be bought for \$160.00 cash or it can be bought on hire purchase by depositing 25% of the cash price, then paying the balance + 10% interest per annum (p.a.) on the balance in 12 monthly instalments. If the bicycle was sold on hire purchase determine the
repaid at a number of regular intervals.	monthly repayments. Cash Price = \$160.00 Deposit = $\frac{25}{100}$ x 160 = \$40.00 Balance = \$160.00 - \$40.00 = \$120.00 Interest on Balance = $\frac{10}{100}$ x 120 = \$12.00 Total amount still to be paid = \$120.00 + \$12.00 = \$132.00 Monthly repayment = $\frac{132}{12}$ = \$ 11.00

Consumer Arithmetic	
Profit, Loss, Discount	
Points to Remember	Illustration/ Example
If an article is sold for more than it cost, then it is	1) A merchant bought a shirt for \$10.00 and sold it for
said to have been sold at a profit	\$13.00.
-	a) Calculate the Profit
Profit = Selling Price – Cost Price	b) Determine the percentage profit
Profit % = $\frac{\text{Profit}}{\text{Cost Price}} \ge 100$ = $\frac{\text{Selling Price-Cost Price}}{\text{Cost Price}} \ge 100$	Profit = Selling price – Cost price = \$13.00 - \$10.00 = \$3.00 Profit % = $\frac{\text{Selling Price-Cost Price}}{\text{Cost Price}} \ge 100$ = $\frac{\text{Profit}}{\text{Cost Price}} \ge 100 = \frac{3}{10} \ge 100$
If an article is sold for less than it cost, then it is	2) A vase costing \$60.00 is sold for \$50.00. Find the
said to have been sold at a loss	2) A vase costing \$00.00 is sold for \$50.00. Find the
	Loss – Cost price - Selling price
Loss $\% = \frac{\text{Cost Price-Selling Price}}{\text{Cost Price}} \ge 100$	= \$60.00 - \$50.00 $=$ \$10.00
Profit is often expressed as a percentage of the cost price. This is called the percentage profit $Percentage discount = \frac{Marked Price - Selling Price}{Marked Price} \ge 100$	Loss $\% = \frac{\text{Cost Price} - \text{Selling Price}}{\text{Cost Price}} \ge 100$ $= \frac{\text{Loss}}{\text{Cost Price}} \ge 100 = \frac{10}{60} \ge 100 = 16\frac{2}{3}\%$ 3) A watch priced at \$160.00 is sold for \$140.00. a) Calculate the discount b) Determine the percentage discount Discount = Marked Price - Selling Price = \$160.00 - \$140.00 = \$20.00
	Percentage discount = $\frac{\text{Marked Price-Selling Price}}{\text{Marked Price}} \times 100$ $= \frac{20}{160} \times 100 = 12 \frac{1}{2} \%$
	4) A house was bought for \$60 000 and is sold for \$75000. What is the percentage profit?
	Profit % = $\frac{\text{Profit}}{\text{Cost Price}} \ge 100$
	$= \frac{\text{Selling Price-Cost Price}}{\text{Cost Price}} \ge 100$
	$= \frac{75000 - 60000}{60000} \ge 100 = \frac{15000}{60000} \ge 100 = 25\%$

Consumer Arithmetic	
Simple Interest	
Points to Remember	Illustration/ Example
Money deposited in a bank will earn interest at the end	Determine the simple interest on \$460 at 5% per annum for
of the year. The sum of money deposited is called the	3 years.
principal. The interest is a percentage of the principal given by the bank for depositing with it. This percentage is called rate. If interest is always calculated	Simple interest = $\frac{P \times R \times T}{100} = \frac{460 \times 5 \times 3}{100} = \69.00 Simon wanted to borrow some money to expand his fruit
on the original principal, it is called simple interest.	shop. He was told he could borrow a sum of money for 30
Remember to change time given in months to years, by dividing by 12.	months at 12% simple interest per year and pay \$1440 in interest charges. How much money can he borrow?
Simple interest = $\frac{P \times R \times T}{100}$	$T = \frac{30}{12} = 2.5$ years
	$P = \frac{SI \times 100}{R \times T} = \frac{1440 \times 100}{12 \times 2.5} = \$ 4800$
	Determine the time in which \$82 at 5% per annum will produce a simple interest of \$8.20
	Time $=\frac{SI \times 100}{P \times T} = \frac{8.20 \times 100}{82 \times 5} = 2$ years

Consumer Arithmetic		
Compound Interest		
Points to Remember	Illustration/ Example	
A sum of money is invested at compound interest ,	Calculate the compound interest on \$640 at 5	% per annum
when the interest at the end of the year (or period) is	for 3 years. What is the Amount after three y	/ears?
added to the principal, hence increasing the principal		
and increasing the interest the following year (or	1 st Principal	640.00
period).	1^{st} interest $(\frac{640 \times 5}{100} = \$32)$	32.00
	2 nd Principal	672.00
The principal plus the interest is called the amount.	2^{nd} interest ($\frac{672 \times 5}{100} = 33.60)	33.60
For compound interest, the interest after each year is	3 rd Principal	705.60
added to the principal and the following year's interest	$3^{\rm rd}$ Interest $\frac{705.60 x 5}{100} = \35.28)	35.28
is found from that new principal	Amount	\$806.48
Compound Interest : $A = P (1 + r/100)^n$	The compound interest for 3 years = \$32.00 + \$ 33.60 + \$35.28 = \$100.88 Amount after 3 years is \$806.48	

Consumer Arithmetic	
Mortgages	
Points to Remember	Illustration/ Example
A mortgage is a loan to finance the purchase of real estate, usually with specified payment periods and interest rates. The borrower (mortgagor) gives the lender (mortgagee) a right of ownership on the property as collateral for the loan.	 Tim bought a house for 250,000. He makes a down payment of 15% of the purchase price and takes a 30- year mortgage for the balance. a) What is Tim's down payment? b) What is Tim's mortgage?
	Downpayment = Percent Down × Purchase Price
	$=\frac{15}{100} \times \$250,000 = \37500
	Amount of Mortgage = Purchase Price – Down Payment = 250,000 – 37500 = 212500
	2) If your monthly payment is 1200 dollars, what is the total interest charged over the life of the loan?
	Total Monthly Payment = Monthly payment $\times 12 \times$ Number of years = $\$1200 \times 12 \times 30 = \432000 Total Interest Paid = Total Monthly Payment – Amount of Mortgage = $\$432000 - \$212500 = \$219500$

Consumer Arithmetic	
Rates and Taxes	
Points to Remember	Illustration/ Example
Taxes are 'calculated' sums of money paid to a government by to meet national expenditures	Mr. Salandy's salary is \$22 000 per year. He has a personal allowance of \$2000, a marriage allowance of \$1000, a child allowance of \$800, national insurance of \$400 and an
 e.g. schools, hospitals, salaries, road networks Gross Salary is the figure before making other deductions. Tax-free allowance - Working people do not pay tax on all their income. Part of their earnings is not taxed. A tax-free allowance is made for each dependent. Examples of dependents are : a wife, a young child, old father. Taxable income is obtained after the tax-free 	insurance allowance of \$300. A flat rate of 18% is paid on income tax. Determine his net salary. Personal allowance = 2000 Marriage allowance = 1000 Child allowance = 800 National insurance = 400 Insurance allowance = 300 Total Allowance = 4500
 allowance is subtracted from the gross salary Net salary is the take home salary of the employee after paying taxes 	Taxable income = $22000 - 4500 = 17500$ Income Tax= 18% of $17500 = \frac{18}{100} \times 17,500 = 3150$ Net Salary= $22000 - 3150 = 18850$

Consumer Arithmetic	
Wages	
Points to Remember	Illustration/ Example
*Basic Week- Number of hours worked per week	1) A man works a basic week of 38 hours and his
*Basic Rate- Amount of money paid per hour	basic rate is \$13.75 per hour. Calculate his total wage
*Workers are paid wages and salaries. Wages can	for the week
be paid fortnightly, weekly or daily.	Total wage for week= Basic Rate x Time
*Overtime- The money earned for extra hours	= 13.75 x 38
beyond the basic week	= \$522.50
	2)John Williams works a 42 hour week for which he is
	paid a basic wage of \$113.40. He works 6 hours
	overtime at time and a half and 4 hours at double time.
	Calculate his gross wage for the week.
	Basic hourly rate $=\frac{\$113.40}{42} = \2.70
	Overtime rate at time and a half
	$= 1 \frac{1}{2} \times \$2.70 = 4.05$
	For 6 hours at time and a half, Mr. William will earn
	$4.05 \times 6 = 24.30$
	Overtime rate at double time
	$= 2 \times \$2.70 = \5.40
	For 4 hours at double time, Mr. William will earn
	5.40 x 4 = 21.60
	Gross Wage = \$113.40 + 24.30 + 21.60 = \$159.30

Trigonometry	
Cosine Rule	
Points to Remember	Illustration/ Example
When a triangle does not have a right angle, we	This following examples will cover how to:
can find the missing sides or angles using either	
the sine rule or the cosine rule	• Use the Cosine Rule to find unknown sides and angles
It is used when two sides and an angle between	 Ose the Shie Kule to find unknown sides and angles Combine trigonometry skills to solve problems
them are given or all three sides are given	combine argonomedy skins to solve problems
The Cosine Rule is very useful for solving triangles: $c^{2} = a^{2} + b^{2} - 2ab\cos(C)$	A 440 B
b C a	$a^2 = b^2 + c^2 - 2bc \cos A$
A B	$a^{2} = 5^{2} + 7^{2} - 2 \times 5 \times 7 \times \cos(49^{\circ})$ $a^{2} = 25 + 49 - 70 \times \cos(49^{\circ})$ $a^{2} = 74 - 70 \times 0.6560$ $a^{2} = 74 - 45.924 = 28.075$ $a = \sqrt{28.075}$
a , b and c are sides	a = 5.298
C is the angle opposite side c	a = 5.30 to 2 decimal places

Trigonometry	
Sine Rule	
Points to Remember	Illustration/ Example
The Sine Rule is also very useful for solving	<u>b</u> <u>a</u>
triangles:	$\sin B = \sin A$
$\frac{b}{\sin B} = \frac{a}{\sin A}$	$\frac{5}{\sin B} = \frac{5.298}{\sin 49}$
	$\sin B = (\sin(49^\circ) \times 5) / 5.298$
When two angles and any side are given or when	$\sin B = 0.7122$
two sides and an angle not between them are given	$B = \sin^{-1}(0.7122)$
	$B = 45.4^{\circ}$ to one decimal place
	$C = 180^{\circ} - 49^{\circ} - 45.4^{\circ}$
	$C = 85.6^{\circ}$ to one decimal place

(ii) Calculate a) the measure of angle JKL b) the distance JL c) the bearing of J from L (a) Required to calculate angle JKL, angle JKL = $90^{\circ} + 54^{\circ}$ $= 144^{\circ}$ (b) $JL^2 = JK^2 + KL^2 - 2 (JK)(KL) \cos 144^\circ$ = $(122)^2 + (60)^2 - 2(122)(60) \cos 144^\circ$ = 30328.008 JL = $\sqrt{30328.008}$ JL = 174.15 km(c) The bearing of J from L <u>122</u> = <u>174.149</u> $\sin \theta \quad \sin 144^{\circ}$ $\sin\theta = \frac{122 \text{ x} \sin 144^{\circ}}{122 \text{ x} \sin 144^{\circ}}$ 174.149 $\theta = \sin^{-1}(0.4417)$ $\theta = 24.31^{\circ}$ $L = 270^{\circ} - 24.31^{\circ}$ $= 245.7^{\circ}$ to the nearest 0.1°

Sets					
Definitions	s and Notation				
Points to Remember		Illustration/ Example			
Points to Remember *A set is a collection of identifiable elements or members that are connected in some way * There are two types of sets: finite and infinite *The symbol \in is used to show that an item is an element or member of a set * A subset is represented by the symbol: \subset and is used to present part of a set separately. * A universal set is made up of all elements from which all subsets will be pulled and is represented by the symbol ε or U * Venn Diagrams are used to represent sets and the relationship between sets (Describe each region). * Complements of a set B are represented by B' and		Examples of sets cards; all vowels in Examples of finit $A = \{All \text{ odd numb}\}$ $V = \{\text{the vowels in}\}$ Examples of infin $A = \{All \text{ natural nu}\}$ $B = \{All \text{ natural nu}\}$ $B = \{All \text{ whole number of symbol } \in \{2\} \in \{1, 2, 3, 4\}\}$ Use of symbol $\subset \{2, 3\} \in \{1, 2, 3, 4\}$ Set Notation:	are: a collection of n the English alpha e sets: bers between 1 and the alphabet} = {a ite sets: umbers} = {1, 2, 3 mbers} = {0, 1, 2, 3 : :	f coins; a pack of abet etc. 10} = {3, 5, 7, 9} a, e, i, o, u} } 3, 4}	
* The inters those eleme	ents that are common	to those sets	Set notation	Venn diagram	Set
*The union of two or more sets consists of those elements that make up those sets.		A U B	$\left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right)^4$	{1, 2, 3}	
Set Notation	Description	Meaning			
AUB	"A union B"	everything that is in either of the	A A R	1 2 4	{2}

Notation		
		everything that is
A U B	"A union <i>B</i> "	in either of the
		sets
		only the things
$A \cap B$	"A intersect B"	that are in both of
		the sets
	"	everything in the
$A^{'}$	"not 4"	universal set
not A	not A	outside of A
		everything in A
<i>B'</i> " <i>B</i> complement"	except for	
	<i>b</i> complement	anything in its
	overlap with <i>B</i>	
$(A \sqcup D)$	$A \cup B$)' "not (A union B)"	everything
$(A \cup D)$		outside A and B
		everything
$(\mathbb{A} \cap \mathbb{B})'$	"not	outside of the
	(A intersect B)"	overlap of A
		and <i>B</i>

{2} $A \cap B$ 3 4 1 A' {3, 4} 2 3 4 {1} B'2 3 4 (A U B)' l 2 {4} 3 $(\mathbb{A} \cap \mathbb{B})'$ 2

Circle Geometry	
Circle Theorems	
Points to Remember	Illustration/ Example
The angle which an arc of a circle subtends at the centre of a circle is twice the angle it subtends at any point on the remaining part of the circumference.	What is the size of Angle POQ? (O is circle's center)
a° 2a°	
	Angle $POQ = 2 \times Angle PRQ = 2 \times 62^{\circ} = 124^{\circ}$
The angle in a semicircle is a right angle.	What is the size of Angle BAC? A O 55° B The Angle in the Semicircle Theorem tells us that Angle ACB = 90° Now use the sum of angles of a triangle equals 180° to find Angle BAC: Angle BAC + 55° + 90° = 180° Angle BAC = 35°
A tangent of a circle is perpendicular to the radius of that circle at the point of contact.	

Circle Geometry	
Circle Theorems	
Points to Remember	Illustration/ Example
Angles in the same segment of a circle and	What is the size of Angle CBX?
subtended by the same arc are equal.	A B
a° a°	Angle ADB = 32° = Angle ACB. Angle ACB = Angle XCB.
	So in triangle BXC we know Angle BXC = 85° , and Angle XCB = 32°
	Now use sum of angles of a triangle equals 180° : Angle CBX + Angle BXC + Angle XCB = 180° Angle CBX + 85° + 32° = 180° Angle CBX = 63°
The line joining the centre of a circle to the	Given that OQ is perpendicular to PR and $PR = 8$
midpoint of a chord is perpendicular to the chord.	units, determine the value of x
	O 5 xP Q R
₽ ₽	PQ = QR = 4 (perpendicular from centre bisects chord)
	In $\triangle OQP$:
	$PQ = 4 \qquad (\perp \text{ from centre bisects chord})$ $OP^2 = OQ^2 + QP^2 (\text{Pythagoras})$ $5^2 = x^2 + 4^2$ $\therefore x^2 = 25 - 16$ $x^2 = 9$ x = 3

Circle Geometry	
Circle Theorems	
Points to Remember	Illustration/ Example
The lengths of two tangents from an external point to	Calculate the unknown length.
the points of contact on the circle are equal.	9.1
	This is a right angled triangle because a tangent of a circle is perpendicular to the radius of that circle at the point of contact. Therefore, use Pythagoras' theorem
	$?^2 = 10.9^2 - 9.1^2 = 118.81 - 82.81 = 36$? = 6.0

Symmetry	
Lines of Symmetry	
Points to Remember	Illustration/ Example
 Definition: A line of symmetry is an imaginary line that can divide an object in equal opposite parts. The line of symmetry is also called the 'mirror line'; it can be horizontal, unrticed or of any angle. 	Identify and determine the number of lines of symmetry in the following shapes: a) Kite b) Rectangle c) Triangle
 Some shapes have no lines of symmetry; A circle has an infinite number of lines of 	
A square has 4 lines of symmetry	A kite has 1 line of symmetry

Transformations	
Rotation	
Points to Remember	Illustration/ Example
*A rotation is a transformation that turns a figure about a fixed point called a centre of rotation. A rotation has a centre and an angle. The angle is measured in an anticlockwise direction.	Draw a triangle ABC on the graph paper. The co-ordinate of A, B and C being A (1, 2), B (3, 1) and C (2, -2), find the new position when the triangle is rotated through 90° anticlockwise about the origin
 Pick a point B on the shape pre-transformation and locate the respective point post- transformation B'. Draw line BB'. Locate the midpoint M of B and B'. Draw a perpendicular bisector (intersecting BB' at a right angle at M). Repeat steps 1-4 for a second point C. Extend the perpendicular bisectors (if necessary) so that they intersect.(Since perpendicular bisectors intersect the center of a circle, and since the circle containing B and B' and the circle containing C and C ' are both centered at the center of rotation), the intersection of the two perpendicular bisectors is the center of rotation. 	A (1, 2) will become A' (-2, 1) B (3, 1) will become C' (2, 2) C (2, -2) will become C' (2, 2) B (3, 1) will become C' (2, 2) Thus, the new position of Δ ABC is Δ A'B'C'
A B' Image A'	Describe fully the rotation with image shape A and object shape B.
	centre (-2, 2)

Transformations	
Enlargement	
Points to Remember	Illustration/ Example
* An enlargement is a transformation that changes	Enlargement with scale factor greater than 1
the size of a figure	Enlarge the object ABC by scale factor 2
What is a scale factor? Enlarging a shape by a positive scale factor means changing the size of a shape by a scale factor from a particular point, which is called the centre of enlargement	
Fractional scale factors	Enlargement with scale factor between -1 and +1 Fractional Scale Factors
If we 'enlarge' a shape by a scale factor that is	Enlarge triangle ABC with a scale factor $\frac{1}{2}$ centred about
between -1 and 1, the image will be smaller than	the origin
the object)	y y
If you enlarge it by a positive number greater than 1, the shape will get bigger.	6 B 5 // A 3 B'/ A 2 // A 1 // A' C' 0 1 2 3 4 5 6
	The scale factor is $\frac{1}{2}$, so: OA' = $\frac{1}{2}$ OA, OB' = $\frac{1}{2}$ OB, OC' = $\frac{1}{2}$ OC
	Since the centre is the origin, we can in this case multiply each coordinate by ¹ / ₂ to get the answers.
	A = $(2, 2)$, so A' will be $(1, 1)$. B = $(2, 6)$, so B' will be $(1, 3)$. C = $(4, 2)$, so C' will be $(2, 1)$.

Transformations	
Enlargement	
Points to Remember	Illustration/ Example
Enlargement Points to Remember Negative Scale Factors An enlargement using a negative scale factor is similar to an enlargement using a positive scale factor, but this time the image is on the other side of the centre of enlargement, and it is upside down to create you enlarged shape.	Illustration/ Example Negative Scale Factors Enlarge the rectangle WXYZ using a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectangle with a scale factor of - 2, centred about the origin. Image: the rectang
	The scale factor is -2, so multiply all the coordinates by -2. So OW' is 2OW. This time we extend the line WO beyond O, before plotting W'. In a similar way, we extend XO, YO and ZO and plot X',Y' and Z'. Can you see that the image has been turned upside

Transformations

Glide-Reflection

Points to Remember

When a translation (a slide or glide) and a reflection are performed one after the other, a transformation called a **glide reflection** is produced. In a glide reflection, the line of reflection is parallel to the direction of the translation. It does not matter whether you glide first and then reflect, or reflect first and then glide. This transformation is commutative.

 $\Delta A'B'C'$ is the image of ΔABC under a glide reflection that is a composition of a reflection over the line *l* and a translation through the vector *v*.

Illustration/ Example
Give some real life examples of scalar quantities: Answer: Height of a building, time taken for a trip, temperature outside, an avocado on the scale reading 87.9 grams,

Vectors	
Vector Quantities	
Points to Remember	Illustration/ Example
A vector has magnitude (how long it is) and	Give some real life examples of vector quantities:
direction:	10 meters to the left of the tree.
direction magnitude	
The length of the line shows its magnitude and the	
arrowhead points in the direction.	
e.g. Increase/Decrease in Temperature, Velocity	

Vectors	
Product of a Vector and a Scalar	
Points to Remember	Illustration/ Example
* One method of multiplication of a vector is by	Calculate $3(^{-2}) = (^{-6})$
using a scalar.	
Vectors	
Position Vector	
Points to Remember	Illustration/ Example
Describe vectors as 2x1 column vectors Associate position vectors with points Find the magnitude of a vector How do I use a column vector to describe a translation? How do I add or subtract vectors? Can any point be represented by a position vector? The length of a vector can be calculated using Pythagoras' theorem	Suppose we have a scalar 2 and a vector $\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Then $2\mathbf{p} = 2 \times \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$. Note that in scalar multiplication, each component of the vector is multiplied by the scalar. $\boxed{\begin{array}{c} \hline 1 \\ 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ 2 \\$

Vectors	
Addition and Subtraction of Vectors	
Points to Remember	Illustration/ Example
* Vector addition is simply the sum of the two vector's components. We can add two vectors by simply joining them head-to-tail:	Add $\binom{8}{13} + \binom{26}{7}$ and illustrate this on a diagram $\binom{8}{13} + \binom{26}{7} = \binom{34}{20}$ 36 36 36 36 36 36 36 34 26 34 36 34 36 34 36 34 36 34 36 34 36 34 36
 We can also subtract one vector from another: first we reverse the direction of the vector we want to subtract, then add them as usual: 	If $\mathbf{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ i) Illustrate $\mathbf{u} - \mathbf{v}$ on a graph ii) Calculate the value of $\mathbf{u} - \mathbf{v}$ i) ii) $\mathbf{u} - \mathbf{v} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ $= \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ $= \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

Vectors

Magnitude of a vector	
Points to Remember	Illustration/ Example
*The magnitude of a vector is shown by two vertical bars on either side of the vector: a We use Pythagoras' Theorem to calculate it:	1) What is the magnitude of the vector $\mathbf{b} = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$
$ \mathbf{a} = \sqrt{x^2 + y^2}$	$ \mathbf{b} = \sqrt{6^2 + 8^2} = \sqrt{36+64} = \sqrt{100} = 10$

Vectors	
Parallel Vectors	
Points to Remember	Illustration/ Example
One can use vectors to solve problems in Geometry e.g. to prove that two vectors are parallel.	In the triangle ABC the points X and Y are the mid- points of AB and AC. Show that XY and BC are parallel.
Two vectors are parallel if they have the same direction To prove that two vectors are parallel: If two vectors \vec{u} and \vec{v} are parallel, then one is a simple ratio of the other, or one is a multiple of the other $\vec{v} = k\vec{u}$	B C C
	$\overrightarrow{XY} = \overrightarrow{XA} + \overrightarrow{AY}$ = - a + b = b - a
	$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$ = -2a + 2b = 2b - 2a = 2 (b - a)
	This implies that one vector is a simple ratio of the other:
	$\frac{\overrightarrow{XY}}{\overrightarrow{BC}} = \frac{b-a}{2(b-a)} = \frac{1}{2}$ i.e. \overrightarrow{XY} : $\overrightarrow{BC} = 1:2$
	OR one is a scalar multiple of the other (cross multiply) $\overrightarrow{BC} = 2 \overrightarrow{XY}$ or $\overrightarrow{XY} = \frac{1}{2} \overrightarrow{BC}$ Hence, XY is parallel to BC and half its length

Vectors	
Collinear Vectors	
Points to Remember	Illustration/ Example
Points that lie on the same line are called collinear	The position vectors of points P, Q and R are vectors
points.	a + b, 4a - b and 10a – 5b respectively. Prove that P, Q
	and R are collinear.
To prove that two vectors are collinear:	
If two vectors are collinear, then one is a simple	$\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ}$
ratio of the other, or one is a multiple of the other	$= (-\mathbf{a} - \mathbf{b}) + (4\mathbf{a} - \mathbf{b})$
$\vec{v} = k\vec{u}$ and they have a common point.	$=3\mathbf{a}-2\mathbf{b}$
	$\overrightarrow{QR} = \overrightarrow{QO} + \overrightarrow{OR}$
	= (-4a + b) + (10a - 5b)
	= 6a - 4b
	$= 2 (3\mathbf{a} - 2\mathbf{b})$
	This implies that one vector is a simple ratio of the
	other and they have a common point Q
	\overrightarrow{PO} $3a-2h$ 1
	$\frac{1}{\overline{OR}} = \frac{5\pi}{2(3a-2b)} = \frac{1}{2}$
	i.e. \overrightarrow{PO} : $\overrightarrow{OR} = 1:2$
	OR one is a scalar multiple of the other (cross
	multiply)
	$\overrightarrow{QR} = 2 \overrightarrow{PQ}$ or $\overrightarrow{PQ} = \frac{1}{2} \overrightarrow{QR}$
	Since $\overrightarrow{QR} = 2 \overrightarrow{PQ}$ and they have a common point Q,
	then P, Q and R are collinear.

Matrices

Introduction to Matrices	
Points to Remember	Illustration/ Example
* A matrix is an ordered set of numbers listed in rectangular form and enclosed in curved brackets. It is	Examples 1) (2 9 -3) is a 1 x 3 row matrix
* In defining the ORDER of a matrix, the number of rows is always stated first and then the number of columns.	2) $\begin{pmatrix} 4\\5\\6 \end{pmatrix}$ is a 3 x 1 column matrix
* There are different types of matrices such as square matrices, diagonal matrices and identity matrices.	3) $\begin{pmatrix} 5 & 7 & 9 \\ 3 & 2 & 5 \end{pmatrix}$ is a 2x3 rectangular matrix
Row Matrix - A row matrix is formed by a single row e.g. $(a \ b \ c)$	4) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is a 2 x 2 square matrix
Column Matrix - A column matrix is formed by a $\begin{pmatrix} a \\ \end{pmatrix}$	5) $\begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{pmatrix}$ is a diagonal Matrix
single column e.g. $\begin{pmatrix} b \\ c \end{pmatrix}$	6) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is an identity matrix
Rectangular Matrix - A rectangular matrix is formed by a different number of rows and columns, and its dimension is noted as: mxn e.g. $\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$ is 3x2	7) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ is the zero or null matrix
Square Matrix - A square matrix is formed by the same number of rows and columns e.g $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is 2x2	
Diagonal Matrix- In a diagonal matrix, all the elements above and below the diagonal are zeroes e.g. $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$	
Identity Matrix- An identity matrix is a diagonal matrix in which the diagonal elements are equal to 1 e.g. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
Singular matrix- see topic on Inverse Singular below	
A zero or null matrix is a matrix with 0 as the element for all its cells (rows and columns). $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	

Matrices

Addition and Subtraction of Matrices	
Points to Remember	Illustration/ Example
Two matrices may be added or subtracted provided they are of the SAME ORDER Addition is done by	Examples: (1 2) (5 6) (6 8)
adding the corresponding elements of each of the two	1) $\begin{pmatrix} 3 & 4 \end{pmatrix} + \begin{pmatrix} 7 & 8 \end{pmatrix} = \begin{pmatrix} 10 & 12 \end{pmatrix}$
$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ a & b \end{pmatrix} = \begin{pmatrix} a+e & b+f \\ c+a & d+h \end{pmatrix} $	2) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ - $\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$ = $\begin{pmatrix} -4 & -4 \\ -4 & -4 \end{pmatrix}$

Matrices		
Multiplication of Matrices		
Points to Remember	Illustration/ Example	
Multiplication is only possible if the row vector and the	Examples:	
column vector have the same number of elements. To multiply the row by the column, one multiplies	1) $2\begin{pmatrix}3 & 1\\4 & 2\end{pmatrix} = \begin{pmatrix}6 & 2\\8 & 4\end{pmatrix}$	
corresponding elements, then adds the results	(Λ)	
$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\left(\begin{array}{c}I\\S\end{array}\right) = \left(\begin{array}{c}aI+bS\\cI+dS\end{array}\right),$	2) $(1 \ 2 \ 3) \left(\frac{5}{6}\right) = (1 \times 4) + (2 \times 5) + (3 \times 6) = (22)$	
	A 1×3 matrix multiplied by a 3×1 matrix gives a 1×1 matrix	
Also,	(2 1) (-2 2)	
$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ a & b \end{pmatrix} = \begin{pmatrix} (ae+bg) & (af+bh) \\ (ce+dg) & (cf+dh) \end{pmatrix}$	3) $\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} -2 & 5 \\ 4 & -1 \end{pmatrix}$	
	$ = \begin{pmatrix} (2 \times -2 + 1 \times 4) & (2 \times 3 + 1 \times -1) \\ (3 \times -2 + 5 \times 4) & (3 \times 3 + 5 \times -1) \end{pmatrix} = \begin{pmatrix} 0 & 5 \\ 14 & 4 \end{pmatrix} $	
	A 2×2 matrix multiplied by a 2×2 matrix gives a 2×2 matrix	

Matrices	
Inverse of a Matrix	-
Points to Remember	Illustration/ Example
If $A = \begin{bmatrix} a & b \end{bmatrix}$	If $A = \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}$, find A^{-1}
	$A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
Then the inverse is	
$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	$= \frac{1}{(3)(2)-(1x4)} \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix}$
and the determinant is	(1 -1/2)
det A = A = ad - bc	$=\begin{pmatrix} 1 & 1/2 \\ -2 & 3/2 \end{pmatrix}$
Matrices	
Singular Matrix	

Points to Remember	Illustration/ Example
A singular matrix is a square matrix that has no inverse	Determine if the matrix $A = \begin{pmatrix} 2 & 6 \\ 1 & 3 \end{pmatrix}$ is singular Det $A = ad$ - $bc = (2)(3) - (6)(1)$
A matrix is singular if and only if its determinant is zero i.e. $ad - bc = 0$	= 6 - 6 = 0
If the determinant of a matrix is 0, the matrix has no inverse	

Matrices		
Transformational matrices		
Points to Remember	Illustration/ Example	
$R=90^{\circ}$ rotation about the origin, given the matrix. This transformation matrix rotates the point matrix 90 degrees anti-clockwise. When multiplying by this matrix, the point matrix is rotated 90 degrees anti-clockwise around (0,0).	$R = 90^{\circ} \text{ anti-clockwise rotation about the origin}$ $\binom{0 -1}{1 0} \binom{4}{3} = \binom{(0 \ x \ 4) + (-1 \ x \ 3)}{(1 \ x \ 4) + (0 \ x \ 3)} = \binom{-3}{4}$	
$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$		
$S=180^{\circ}$ anticlockwise rotation about the origin, given the matrix. This transformation matrix creates a rotation of 180 degrees. When multiplying by this matrix, the point matrix is rotated 180 degrees around (0,0). This changes the sign of both the x and y co- ordinates.	S = 180° anti-clockwise rotation about the origin $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} (-4 \times 1) + & (3 \times 0) \\ (4 \times 0) + & (3 \times -1) \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$	
$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$		
$T=270^{\circ}$ rotation about the origin, given the matrix	$T = 270^{\circ}$ anti-clockwise rotation about the origin	
$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} (4 \times 0) + & (3 \times 1) \\ (4 \times -1) + & (3 \times 0) \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$	
$I=360^{\circ}$ rotation about the origin, given the matrix. This transformation matrix is the identity matrix. When multiplying by this matrix, the point matrix is unaffected and the new matrix is exactly the same as the point matrix	I = Identity Matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} (4 \times 1) + (3 \times 0) \\ (4 \times 0) + (3 \times 1) \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$	
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		
X= reflection on x axis, given the matrix. This transformation matrix creates a reflection in the x-axis. When multiplying by this matrix, the x co-ordinate remains unchanged, but the y co-ordinate changes sign $ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $	X = Reflection on x axis $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} (4 \times 1) + (3 \times 0) \\ (4 \times 0) + (3 \times -1) \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$	
Y= reflection on y axis, given the matrix This transformation matrix creates a reflection in the y-axis. When multiplying by this matrix, the y co-ordinate remains unchanged, but the x co-ordinate changes sign	Y = Reflection on y axis $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} (4 \times -1) + & (3 \times 0) \\ (4 \times 0) + & (3 \times 1) \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$	
$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ W = reflection on y = x, given the matrix. This transformation matrix creates a reflection in the line	W= reflection on y = x	

Matrices		
Transformational matrices		
Points to RememberIllustration/ Example		
y=x. When multiplying by this matrix, the x co- ordinate becomes the y co-ordinate and the y-ordinate becomes the x co-ordinate.	$ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} (4 \times 0) + (1 \times 3) \\ (1 \times 4) + (0 \times 3) \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} $	
$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		
Reflection on y = - x, given the matrix. This transformation matrix creates a reflection in the line y=-x. When multiplying by this matrix, the point matrix is reflected in the line y=-x changing the signs of both co-ordinates and swapping their values. $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	Reflection on y = - x, $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} (4 \times 0) + (-1 \times 3) \\ (-1 \times 4) + (0 \times 3) \end{pmatrix} = \begin{pmatrix} -3 \\ -4 \end{pmatrix}$	

Matrices		
Combining Transformations		
Points to Remember	Illustration/ Example	
Points to Remember We see that sometimes 2 transformations are equivalent to a single transformation.	Illustration/ Example 1) The diagram shows how the original shape A is first reflected to B, and B is then reflected to C.	

Matrices	
Combining Transformations	
Points to Remember	Illustration/ Example
	A triangle is to be enlarged with scale factor 2, using the origin as the centre of enlargement. Its image is then to be translated along the vector $\begin{pmatrix} -8\\1 \end{pmatrix}$ The coordinates of the corners of the triangle are (2, 1), (2, 4) and (4, 1). What <i>single</i> transformation would have the same result?
	The diagram shows the original triangle, A; the enlargement takes it to B, which is then translated to C.
	The triangle A could be enlarged with scale factor 2 to give C. This diagram shows that the centre of enlargement would be the point (8, -1). The single transformation that will move triangle A to triangle C is an enlargement, scale factor 2, centre (8, -1).

Index

Number Theory	1
Basic Rules	1
Positive and Negative Numbers	2
Decimals – Rounding	2
Operations with Decimals	3
Significant figures	4
Binary Numbers	4
Computation – Fractions	5
Prime Numbers	5
Computation of Decimals, Fractions and Percentages	6
Triangles	7
Classification of Triangles	7
Pythagoras' Theorem	9
Similar Triangles & Congruent Triangles	9
Mensuration	12
Areas & Perimeters	12
Surface Area and Volumes	15
Geometry	19
Sum of all interior angles of a regular polygon	19
Sum of all interior angles of any polygon	20
Sum of all exterior angles of any polygon	21
Circle Geometry	22
Algebra	24
- Simplifying algebraic expressions	24
Substitution	24
Binary Operations	25
Solving Linear Equations	25
Linear Inequalities	26
Changing the Subject of a Formula	26
Solving Simultaneous Equations (both Linear)	
Solving Simultaneous Equations (Linear and Quadratic)	29

Indices	
Product of two brackets	
Factorization of Simple expressions	
Solving quadratic inequalities	
Relations, Functions and Graphs	
Relations and Functions	
Relations, Functions and Graphs	
Composite Functions & Inverses	
Introduction to Graphs	
Non-Linear Relations	
Direct & Inverse Variation	40
Coordinate Geometry	41
Linear Programming	43
Distance - Time Graphs	44
Velocity - Time Graphs	45
Statistics	47
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph	47
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph	47 49
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive)	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive) Interquartile Range and Semi-Interquartile Range	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive) Interquartile Range and Semi-Interquartile Range Consumer Arithmetic	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive) Interquartile Range and Semi-Interquartile Range Consumer Arithmetic Ready Reckoner	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive) Interquartile Range and Semi-Interquartile Range Consumer Arithmetic Ready Reckoner Foreign Exchange Rates	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive) Interquartile Range and Semi-Interquartile Range Consumer Arithmetic Ready Reckoner Foreign Exchange Rates Hire Purchase	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive) Interquartile Range and Semi-Interquartile Range Consumer Arithmetic Ready Reckoner Foreign Exchange Rates Hire Purchase Profit, Loss, Discount	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive) Interquartile Range and Semi-Interquartile Range Consumer Arithmetic Ready Reckoner Foreign Exchange Rates Hire Purchase Profit, Loss, Discount Simple Interest	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive) Interquartile Range and Semi-Interquartile Range Consumer Arithmetic Ready Reckoner Foreign Exchange Rates Hire Purchase Profit, Loss, Discount Simple Interest Compound Interest	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive) Interquartile Range and Semi-Interquartile Range Consumer Arithmetic Ready Reckoner Foreign Exchange Rates Hire Purchase Profit, Loss, Discount Simple Interest Compound Interest Mortgages	
Displaying data: Pie Chart, Bar Graph, Histogram and Line Graph Frequency Distribution Displaying data on the Bar Graph Measure of Central Tendency – Mean, Median and Mode Cumulative Frequency Curve (Ogive) Interquartile Range and Semi-Interquartile Range Consumer Arithmetic Ready Reckoner Foreign Exchange Rates Hire Purchase Profit, Loss, Discount Simple Interest Compound Interest Mortgages Rates and Taxes	47 49 49 49 53 53 53 53 53 53 53 55 55 55 55 55 56 57 57 57 58 58

Trigonometry	60
Cosine Rule	60
Sine Rule	60
Bearings	61
Sets	63
Definitions and Notation	63
Circle Geometry	64
Circle Theorems	64
Symmetry	67
Lines of Symmetry	67
Transformations	69
Translation	69
Reflection	70
Rotation	72
Enlargement	73
Glide-Reflection	75
Vectors	75
Scalar Quantities	75
Vector Quantities	76
Vector Representation	76
Product of a Vector and a Scalar	77
Position Vector	77
Addition and Subtraction of Vectors	78
Magnitude of a vector	79
Parallel Vectors	79
Collinear Vectors	80
Matrices	80
Introduction to Matrices	81
Addition and Subtraction of Matrices	82
Multiplication of Matrices	82
Inverse of a Matrix	82
Singular Matrix	82

Simultaneous Equations	
Transformational matrices	84
Combining Transformations	85

Commutative Law When adding or multiplying numbers , the order of the	a + b + c = c + b + a = b + c + a 2 + 3 + 4 = 4 + 3 + 2 = 3 + 4 + 2 = 9
numbers does not matter.	
	$a \times b \times c = c \times b \times a = b \times c \times a 2 \times 3 \times 4 = 4 \times 3 \times 2 =$
	3 × 4 × 2 = 24
BODMAS provides the key to solving	

Curriculum Planning and Development Division - 91

mathematical problems	
B - Brackets first	
O - Orders (ie Powers and Square Roots,	
etc.) DM- Division and Multiplication (left-	
to-right)	
AS – Addition and Subtraction	
In a set of numbers, multiplication must be	
applied before addition.	
••	

Page 63

Use of symbol \subset : {2, 3} \subset {1, 2, 3, 4} should be this